C-STRING I/O

Reading and Writing: C-String Style

Delroy A. Brinkerhoff


Presenter
Presentation Notes
Regardless of which kind of string we use, we need to know how to read them into and write them from a program. Writing strings is quite straightforward but reading them poses an unexpected challenge.



C-STRING OUTPUT

C-String output is independent of how the C-string was defined or initialized
cout << "Please enter the value for x:" << endl;
cout << sl << endl;
cout << s2 << endl;
cout << s3 << endl;
cout << s4 << endl;
cout << s5 << endl;
cout << s6 << endl;
cout << s7 << endl;

cout << s8 << endl;



Presenter
Presentation Notes
C-strings can be written to the console with the inserter operator, which is demonstrated by the first cout statement. We have been doing this since our first hello-world program. The variables s1 through s8 were defined and initialized in the previous video. They represent C-strings that were created both as character arrays and as pointers. Some were created as automatic variables while other were created dynamically with the new operator. How we output the string to the console is independent of how the string was created or how it was initialized.
But do notice that s9 and s10 are not included in this example. s9 and s10 were created as uninitialized character arrays. Trying to write a character array, without the null-termination character, as a C-string would cause a run time error.



C-STRING INPUT: EXTRACTOR

The extractor operator (>>) does not read past spaces!!

char input[100];

cout << "Enter a string" << endl;
cin >> input;
cout << 1input << endl;

Input: Hello world

Output: Hello



Presenter
Presentation Notes
If we can write C-strings to the console with the inserter operator, then it seems reasonable to assume that we can read C-strings with the extractor operator. The four C++ statements illustrate the steps to carry out this operation. Also illustrated are the data that are input to the program, which are then immediately written back out. The problem is that the extractor operator stops reading at the first whitespace character. The extractor operator simply does not correctly read C-strings containing spaces.



C-STRING INPUT: GETLINE

The getline function does read spaces

char input[100];

cout << "Enter a string" << endl;
cin.getline (input, 100);
cout << 1input << endl;

Input: Hello world

Output: Hello world



Presenter
Presentation Notes
Recall that cin is an object; specifically, it is an instance of a class named istream. The istream class has a member function named getline, which we call using the dot operator just as you would call an object’s methods in a Java program.
The getline function takes two arguments. The first argument is the C-string where the data will be stored. Notice that the first argument is being passed by pointer – the name of an array is the address of the array – so that it is an IN/OUT argument (that is, information can be passed out of the function through the argument list). getline reads a full line of text from the console, including any spaces and the newline character, discards the new line character, and then stores the text in the C-string argument. The second argument is the size of the array forming the C-string. In this example, the size of the array is 100, so getline will read at most 99 characters and save one array element to store the null-termination character.
Finally, notice that the C-string begins as an uninitialized character array. getline does not require the presence of a null-termination character to work correctly and creates a correctly terminated C-string from the data input.



	C-String I/O
	C-String Output
	C-String Input: Extractor
	C-String Input: getline

