C-STRING FUNCTIONS

Library or APl Functions

#include <cstring>

Delroy A. Brinkerhoff

Presenter
Presentation Notes
C++ provides a useful set of library or API functions that make many operations based on C-strings much easier. This video introduces a number of features and concepts that are common to all of the C-string library functions. Understanding these common features will allow us to quickly study four very useful functions and prepare us to use the documentation whenever we need to learn about the other functions.

C-STRINGS ARE PRIMITIVE

C-Strings are based on arrays and pointers: they are a primitive data type

Header file only needed when using the C-string functions
#include <cstring>

#include <string.h>

Presenter
Presentation Notes
C-strings are a primitive data type, so some operations based on them don’t require a specialized library. The cstring header file, or the older string.h header file, is only required when using the C-string library functions. In this and the subsequent videos, notice that most of the C-string functions begin with the characters “str.”

ASCII ENCODING

Individual characters are encoded as integer values
‘0’ -9’ as 48 — 57
‘A —“Z"as 65 -90
‘@ -7 as 97 - 122
punctuation characters are mixed in

control characters are 0 — 31

|28 — 255 are the extended ASCII

Presenter
Presentation Notes
The individual characters stored in a string are based on the ASCII numerical character encoding standard. This impressive sounding encoding simply means that each character appearing in any computer data is represented by an 8-bit number. There are a total of 256 unique characters that can be formed by different patterns of 8-bits. Computer manufacturers have agreed, at least for some numbers, to use the same number to represent the same character.
Some important values are the digits 0 through 9, which are represented by the numbers 48 through 57. The capital letters A through Z are represented by the numbers 65 through 90, while the lower case letters, a through z, are represented by the numbers 97 through 122. The punctuation characters, including the space character, are interspersed within the other character ranges.
The first 32 numbers, that is 0 through 31, represent control characters. These characters are typically used to control devices connected to computers. Finally, the last 128 numbers form the extended ASCII characters, whose use or interpretation can vary from one geographic region to another or from one operating system to another.

Dec HxOct Char Dec Hy Oct Himl Chr [Dec Hx Oct Hirml Chr| Dec Hx Oct Htrml Chr
O 0 000 NUL (ruall) 32 20 040 Space| 64 40 100 d; [95 A0 140 `
1l 1 00l Z0H (start of heading) 33 21 041 =#33; ! 65 41 101 &«#65; &4 97 61 141 «#97; a
2 2 002 3Tx [(start of text) 34 Z2 042 " 7 6o 42 10Z &«#66; B 95 62 142 &«#958; b
3 3 003 ETX [end of text) 35 23 043 # # 67 43 103 «#67; C 99 /3 143 «#99; ¢
4 4 004 EOT [(end of transmission) 36 24 044 $ & 65 44 104 «#68; D |100 54 144 d d
S 5 005 ENQ {enguiry) 37 25 045 % % 69 45 105 &«#69; E |101 &5 145 &#l0l; &
6 6 006 ACE [acknowledge) 35 Z6 046 Ŧ & 70 46 106 «#70; F (102 66 146 f €
7 7 007 BEL (bell) 39 27 047 ' " 71 47 107 «#71; G |103 &7 147 g o
& & 010 E3 (backapace) 40 25 050 (| 72 45 110 «#72; H |104 68 150 h h
9 9 011 TAE (hori=zontal tah) 41 29 051 =#41;:) 73 49 111 «#73; I [105 69 151 i 1
10 &4 012 LF (NL line feed, new line)| 42 24 052 * * 74 4h 112 «#74: T (106 64 152 j 7
11 B 013 VT ([wertical tah) 43 ZB 053 &«#43; + 75 4B 113 «#75; E (107 6B 153 k: k
12 C 0l4 FF (NP form feed, new page)| 44 ZC 054 s#dd; | 76 4AC 114 «#76; L |108 6C 154 &#l08; 1
13 D 015 CE (carriage return) 45 2D 055 - - 77 4D 115 M M |109 6D 155 m D
14 E 0lg 20 (shift out) 45 ZE 056 . . 78 4E 116 «#78; N (110 gE 156 n n
15 F 017 3I (shift in) 47 ZF 057 «#47: F 79 4F 117 «#79; 0 (111 aF 157 o o
16 10 020 DLE [(data link escape) 43 30 0s0 - 0 g0 50 l1z0 &«#30; P |11z 70 la0 zZ: p
17 11 021 DC1 [(dewice control 1) 49 31 05l &«#49; 1 g1 51 121 &«#81; 0 (113 71 16l q 9
15 12 022 DCZ [(dewice control 2£) B0 32 06z 2 2 gz Gz 12z «#82; R (114 72 1lgz2 r ¢
19 13 023 DC3 [dewice control 3) 51 33 063 l; 3 83 53 123 ſ 5 |115 73 163 &#llh: =
20 14 024 DC4 [(dewvice control 4) B2 34 064 «#52; 4 gd 54 124 «#84; T (116 74 1lad &#ll6; ©
21 15 025 NAE [(negative acknowledoge) 53 35 065 5 5 85 55 125 U T |117 75 165 u u
22 le 026 3¥N [(synchronous idle) 54 36 066 6 6 g6 b lze V V |118 76 leg &#l1a; ¥
23 17 027 ETE (end of trans. hlock) 85 37 0&67 7: 7 g7 &7 127 «#87; W (119 77 167 w w
24 18 030 CAN (cancel) 56 38 070 8 8 88 58 130 &«#83; X |120 78 170 l20; ¥
25 19 031 EM (end of medium) 57 39 071 #5789 89 59 131 «#89; T (121 79 171 y ¥
26 1lh 032 STUE (substitute) B8 34 07Z &«#55; a0 54 132 «#90; 2 (122 7Th 172 &#l22; =
27 1B 033 ESC [escape) 59 3B 073 ; ; 91 5B 133 «#91; [(123 7B 173 {:
28 1C 034 F3 [(file separator) a0 3C 074 «#a60; < 92 EC 134 «#92; % (124 7C 174 | |
29 1D 035 G5 [(group separator) 6l 3D 075 «#6l; = 93 5D 135 «#93;] |125 7D 175 } }
30 1E 036 RS (record separator) B2 3E 076 >: - 94 EE 136 ^ ~ |126 TE 176 &#l26; ~
31 1F 037 U3 [(unit separator) 63 3F 077 ? 7 95 S5F 137 _ 127 7F 177 DEL

https://www.asciitable.com/

Source: www.LookupTables.com

Presenter
Presentation Notes
This is one example of an ASCII table. You can find this table and many more by Googling “ASCII table.”
Many ASCII tables show the numeric value representing a specific character in decimal or base-10, in hexadecimal or base-16, and in octal or base-8. The control characters are grouped on the left. The digits, the upper case characters, and the lower case characters can all be seen in their respective ranges.
Note that the 2-byte Unicode character set, which is what Java uses, is, in a sense, replacing the ASCII encoding. Perhaps it would be more accurate to state that Unicode is subsuming ASCII as the first 127 characters in both encodings are identical.

nullptr

First introduced in chapter 4, nullptr indicates when a pointer variable isn’t
pointing to anything (C++ also allows NULL and the numeral 0)

char* p;

p = nullptr;

if (p == nullptr)
if (p !'= nullptr)

Function arguments and return values can be nullptr

Presenter
Presentation Notes
nullptr was first introduced in chapter 4 as an address value that makes a pointer variable not point to anything. While nullptr is the preferred way of doing this, C++ still accepts the older NULL and the numeral 0 to denote the same thing.
nullptr is a value that can be stored in a pointer variable and then later tested for. Some of the C-string functions return nullptr in some cases and some will also accept nullptr as an argument. What nullptr means in any of these cases depends on the specific function and is always clearly described in the function’s documentation.
It’s always a good idea to store a value in a variable soon after it is defined. This can be done with a read operation or with an assignment operation. In the case of a pointer, if it is not soon initialized with “real” data, we should store nullptr in it so that we know that it does not point anything (otherwise the random bit pattern in memory might be mistaken as a legitimate address, which can lead to a difficult to find error).

EMPTY C-STRINGS

An empty C-string is not the same as a null C-string
Null C-strings do not have allocated memory
Empty C-strings have memory but do not have data

Must have the null-termination character

char s[100] = "";

char s[100]; s[0] = '"\O';
0O 1 2 3 4 5 6 7

s [\O

Presenter
Presentation Notes
Recalling that C-strings can be manipulated as character pointers, it’s important to differentiate between a null string and an empty string. A null string does not point to anything, while an empty string points to some allocated memory but that the memory does not contain any valid data. It’s also important to differentiate between an uninitialized character array and an empty C-string. An empty string will have a null-termination character but that character will be the first character in the array, that is, it will be in array element 0.

PSEUDO DATA TYPES

Pseudo data types are size t
aliases created as symbolic constants an integer suitable for hold a data size
converted to real types at compile time errno_t
used to improve code portability an integer that encodes an error number

typically named end with a“_t” at the end

Presenter
Presentation Notes
C++ uses pseudo data types in a number of situations. A pseudo data type is a symbolic name that the compiler system translates into a real data type. The name of a pseudo data type typically has an “_t” at the end.
Pseudo data types are used to improve code portability. For example, on some systems an int is 2 bytes in size, while on other systems an int is 4 bytes long. Two bytes may not be big enough to hold the size of something and four bytes may be a better choice. So, on the first system the pseudo type size_t might become an unsigned long, while on the second system size_t can become an unsigned int.

C-STRING FUNCTION ARGUMENTS

The C-string arguments for the C-string functions(<cstring>) are shown as
char*

char* strcpy(char* destination, const char* source);
Pointers must point to allocated memory
character array: char s1[100];

dynamic: char* s2 = new char[100];

strcpy(s2, sl);

Presenter
Presentation Notes
When dealing with C-strings, we must pay particular attention to how we convert the function prototypes found in C++ documentation into working function calls. As illustrated by the prototype for the string copy function, most C-string function arguments are specified as pointers. So it’s naturally tempting, especially for new C++ programmers, to define the variables passed to these functions as pointers. But we must remember that a pointer is just an address, which is not large enough to hold very many characters.
C-string function arguments are correctly defined as an array – again, remember that the array name is an address or pointer – or allocated with the new operator.

CHARACTER POINTER RETURN VALUES

Many C-string functions return a character pointer

char* strcpy(char* destination, const char* source);
The pointer is often one of the arguments; return destination;
This a convenience that allows embedding the call in a larger context:

cout << strcpy(s2, sl) endl;

Presenter
Presentation Notes
As is again illustrated by the string copy function, some of the C-string functions also return a character pointer. The return value is sometimes described as a “convenience” operation. For functions like string copy and string concatenation, the first argument is an IN and OUT argument – data can pass both into and out of the function through the argument. These functions modify their first argument, that is, the destination contains the result of the work done by the function; so a return value is not needed.
But the function does have a return value – specifically, it returns the first argument or the destination. That means that it returns the same information in two different ways: through the argument list and as the function return value. This allows programmers to embed the function call in larger expressions when doing so is convenient.

MICROSOFT VISUAL STUDIO

Microsoft replaces many of the standard C-string functions with secure
versions whose names end with “ _s”

One additional argument

Integer return type

Suppress with: #define CRT SECURE NO WARNINGS

errno_t strcpy s(char *strDestination,
size t numberOfElements,

const char *strSource);

Presenter
Presentation Notes
Finally, we need to be aware that Microsoft Visual Studio has replaced many of the standard C-string functions with its own secure versions. Typically, the names of the Microsoft secure functions end with an “_s” and add one more argument, which is the size of the destination function argument. The secure functions use the size to prevent overflowing the array, that is, to prevent storing strings longer than the array. The Microsoft version also returns an error code in place of the traditional character pointer. The differences between the Microsoft and the traditional string copy function are highlighted in red.
We can still access the standard C-string functions by adding a #define directive before all of the #include directives.

	C-String Functions
	C-Strings are Primitive
	ASCII Encoding
	Slide Number 4
	nullptr
	Empty C-Strings
	Pseudo Data Types
	C-String Function Arguments
	Character pointer return values
	Microsoft Visual Studio

