MORE C-STRING FUNCTIONS

strchr, strrchr
strstr

strtok, strtok_s, and strtok r

Delroy A. Brinkerhoff

Presenter
Presentation Notes
C++ inherits a rich set of C-string functions from C. This video describes four more. Two of the functions search for characters, another searches for a sub-string, and all versions of the last function parse a string into tokens. These functions are used less frequently than those previously described, so it’s not important to memorize them and some instructors may not assign this section.

strchr AND strrchr

o 1 2 3 4 5 6 7 8 9 10 11 12

sl s2
char* strchr(char* target, int c); const char* target = "HELLO WORLD";
const char* strchr(const char* target, int c); const char* s| = strchr(target, 'L");

const char* s2 = strrchr(target, 'L");
char* strrchr(char* target, int c);
const char* strrchr(const char* target, int c); cout << s| << endl;

cout << s2 << endl;

Presenter
Presentation Notes
The C-string library provides two character-searching functions named strchr and strrchr. The names suggest the functions’ purpose: Both functions search for a character in a string, named “target” in the examples of this section. strchr searches the string left-to-right – the forward direction for English readers – while strrchr searches right-to-left – or in the reverse direction for English readers.
There are two overloaded versions of each function, allowing the functions to work with constant and non-constant data. Also notice that it’s common to use integers to store character-data – C++ automatically converts between integers and characters. Both the forward and reverse functions return a pointer to the first occurrence of a character if one is found or nullptr if the string doesn’t contain the searched for character. It’s easy to convert the pointer to an index value – see section 4.9 for a hint.

strstr

o 1 2 3 4 5 6 7 8 9 10 11 12

s3

char* strstr(char* target, const char* sub); const char* target = "HELLO WORLD";
const char* strstr(const char® target, const char* sub); const char* s3 = strstr(target, "WWORLD");

cout << s3 << end|;

Presenter
Presentation Notes
Searching for a substring in a target string is a surprisingly common task. For example, DNA and RNA consist of nucleotide chains, and each nucleotide consists of four bases designated by the letters A, C, G, and T. Genomic research often involves searching for specific sub-sequences of these four characters embedded within larger strings. The strstr function efficiently carries out this task, searching left-to-right. It returns the beginning address of the first substring if one is found or nullptr if the target does not contain the substring. You can convert the pointer into an array index using the address arithmetic described in section 4.9.

PARSING / TOKENIZING

Parsing breaks a string into groups of meaningful characters called tokens.
Adjacent tokens are separated by one or more delimiters.

Cranston Q. Snort, (801) 555-1234,115 Elm St.
total = update + 1;

// this is a comment

See, the quick;red: fox;

Presenter
Presentation Notes
Parsing, also known as tokenizing, is another common string-based task. Paring assumes that some groups of characters in a string, called tokens, have some specific meaning. The groups of characters are separated by designated divider characters called delimiters. For example, some spreadsheets and databases import and export data as comma-separated values (CSV).
This example represents one row of a spreadsheet or one database recorded as a string with three tokens separated by comma delimiters.
Every compiler has a component called a parser or tokenizer whose task is to decompose a program into pieces small enough to be converted into machine code. The symbols, like braces and parentheses, appearing in a program are delimiters. Although oversimplified, this example shows that the space character and semicolon delimit the tokes “total,” “update,” “=,” “+,” and “1.”
Continuing our programming example, the “//” and new-line character delimit a comment.
The final example demonstrates five tokens separated by four delimiters. We’ll use this example to demonstrate parsing or tokenizing C-strings with strtok and related functions.

strtok

target

target

target

target

target

target

char* strtok(char* target, const char* delims);

Slfele|,|[t]|h|e gluli|lc|k]|;|r|e]|d flo| x|[\O
—
S{e|le|\0[t|h|e gluli|lc|k]|;|r|e]|d flo| x|[\O
L
Sle|le|\0o|t|h|e|\O|g|u|i|c|k|;|r|e|d flo]|x|[\O
L,
Sle|le|\0o|t|h|e|\O|g|u|i|c|k|\O|r|e]|d flo|x|[\O
L
Sle|le|\0o|t|h|e|\0O|g|u|i|c|k|\O|r|e|d]|\0o|f]|o]|Xx]|\O
L
Sle|le|\o|t|h|e|\0|g|u|i|c|k|\O|r|e|d]|\0o|f]|o]|Xx]|\O

Presenter
Presentation Notes
The strtok functions, so named because they tokenize C-strings, require two C-string arguments: the target string the function parses and a list of one or more delimiters. Although we can specify multiple delimiters, only one is needed to separate two tokens. The strtok functions are more difficult to understand than the other functions presented in this section. I believe there are three reasons for this difficulty.
First, to extract all the tokens, we need to call the function repeatedly, once for each token and once more to detect when tokenization is finished. The illustration begins by showing the target string before parsing begins. The first strtok call begins the parsing operation and returns the first token. The subsequent calls extract and return the remaining tokens. These calls pass nullptr as the first argument, signaling the function to continue processing the string started by the first call. The last call returns nullptr, signaling that no more tokens are left.
The second challenge is how the functions return the tokens: as a pointer to the first character in the token. The illustration shows this with the variable “t” that is updated with each function call.
Finally, the strtok functions are unusual because they change the target string by replacing the delimiters with the null termination character. The illustration shows the replacement with the “\0” in the yellow boxes.

strtok EXAMPLE

char target[100] = "See,the quick;red:fox";

const char* delims =" ,:;";
char* name = strtok(target, delims); char* token = strtok(target, delims);
char* addr = strtok(nullptr, delims); while (token != nullptr)
char* phone = strtok(nullptr, delims); {

cout << token << endl;
token = strtok(nullptr, delims);

Presenter
Presentation Notes
The program begins with the definition of the target string. An authentic program would likely read the data from a file. The program also defines the delimiter string, which consists of four delimiter characters in this example – the space is a valid delimiter.
The first strtok call “primes the pump” by initiating parsing of the target. It also returns the first token.
Parsing continues until strtok returns nullptr, signaling that the string is fully parsed.
If we know how many tokens there are in the target, we can use a sequence of separate function calls.
But when the number of tokens is unknown or can change for each string, it’s common to put the calls in a loop. This example uses a while-loop, but you can also use for- and do-while loops.
Passing a string as the first argument causes strtok to begin parsing that string. Passing nullptr as the first argument causes strtok to continue parsing the previous string. Notice that we can change the delimiter string before any strtok call.

IMPLEMENTING strtok

char* strtok(char* target, const char* delims)

{

static char* context = nullptr;

if (target != nullptr)
context = target;

Presenter
Presentation Notes
Calling strtok repeatedly, once for each token, requires it to “remember” where it left off parsing in the last call. Static variables were created to handle this very situation. The initialization only takes place once when the program is first loaded into memory. We pass a valid C-string to strtok on the first call and it initializes the context. The program updates context as part of the parsing process and the value is retained between calls because it is a static variable. But this means that strtok can’t parse two or more strings at the same time: programmers can't begin parsing string-A, switch to string-B, then return to string-A.

strtok_s: MICROSOFT EXAMPLE
strtok_r: LINUX EXAMPLE

char* strtok_s(char* target, const char* delims, char** context);
char* strtok_r(char* target, const char* delims, char** context);

char target[100] = "See,the quick;red:fox";

const char* delims =" ,:;";

char* context = nullptr;

char* token = strtok s(target, delims, &context);
while (token != nullptr)

{
cout << token << endl;

token = strtok s(nullptr, delims, &context);

Presenter
Presentation Notes
The Microsoft and Linux functions eliminate this restriction by replacing the local static variable with the context argument. Essentially, they move the variable “remembering” the current parsing location from the function scope to the calling scope – from the function to the client code. Aside from the different function name-endings, the two functions behave in the same way.
Understanding context’s double-pointer type is more difficult than using it. First, context is a C-string – a character pointer – which accounts for one asterisk or one level of indirection. But the strtok functions pass information back to the client through it, so it must be passed using an INOUT technique. The C-programming language, from which C++ inherits the original strtok function, doesn’t support pass-by-reference, leaving pass-by-pointer, accounting for the second asterisk or level of indirection.
So, when we use these functions, we define context as a character-pointer and use the address-of operator in the function call.

	More C-String Functions
	strchr and strrchr
	strstr
	Parsing / Tokenizing
	strtok
	strtok example
	Implementing strtok
	strtok_s: Microsoft example�strtok_r: Linux Example

