C-STRINGS AND
NUMBER CONVERSION

Documentation and Examples

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Converting C-strings to numbers and numbers to C-strings is a surprisingly common programming task.

C-STRINGS AND THE CONSOLE

SYSTEM CALLS

read(char* buf, int number);
read(void* buf, size_t number);
write(char* buf, int number);

write(void* buf, size_t number);

CONVERSION OPERATORS

>>

Calls the read system call
Converts C-strings to numbers

<<

Converts numbers to C-strings

Calls write system call

Presenter
Presentation Notes
For example, the console only supports C-strings. Programs are responsible for converting C-strings to numbers on input and numbers to C-strings on output. They typically call library functions that perform the conversions and interface with the operating system to transfer the strings between the program and the console.
Most operating systems support calls similar to these, but the data types may vary slightly. The first argument is a C-string, and the second is the number of bytes or characters the operation transfers between the program and the console.

C-STRING (ASCII) TO
NUMBER CONVERSIONS

DOCUMENTATION PROTOTYPES EXAMPLE FUNCTION CALLS
int atoi(const char* str); cout << atoi(sl) << endl;

cout << atoi("123") << endl;
long atol(const char* str); cout << atol(sl) << endl;

cout << atol("123") << endl;
double atof(const char* str); cout << atof(s2) << endl;

cout << atof("3.14159") << endl;

Presenter
Presentation Notes
Some problems require programs to convert between C-strings and numbers independent of I/O operations. The names of the three illustrated functions are shortenings of ASCII to integer, long, and floating-point, respectively. ASCII is used here as a synonym for text or C-string. The single function argument for each function is a C-string: a variable, a string literal, or any expression producing a C-string. The functions return numeric values, allowing programs to use them as expressions, as illustrated. These functions assume their string arguments only have number characters.

FLEXIBLE (ADVANCED) C-STRING TO
NUMBER CONVERSIONS

long strtol(const char* index, char** endptr, int base);
cout << strtol("123", nullptr, 10) << endl;
cout << strtol("e@xafcd", nullptr, 16) << endl;

double strtod(const char* index, char** endptr);

cout << strtod("3.14159", nullptr) << endl;

Presenter
Presentation Notes
These functions are more complex, making them more flexible and more robust. The names are shortening of string to long and string to double. strtol allows programmers to use bases or radixes other than base 10. For example, programs often use octal and hexadecimal, base 8 and 16.

The two asterisks make the second argument, endptr, a double pointer. If the program sets it to nullpter, the function doesn’t use it. Otherwise, it defines a C-string passed by-pointer, making it an INOUT parameter. If a string has non-number characters or more than one number, endptr marks the end of the conversion process.

THE endptr (1)

endptr char S[] = "123 456 789";

A

end

char* end = nullptr;

o 1 2 3 4 5 6 7 8

©

10 11 cout << strtol(s, &end, 10) << endl;
cout << strtol(end, &end, 10) << endl;
cout << strtol(end, &end, 10) << endl;

(0]
>
o
A

endptr

o 1 2 3 4 5 6 7 8

©

10 11

Presenter
Presentation Notes
The illustration shows the C-string s containing three numbers separated by whitespace delimiters. The delimiters can be one or more spaces, tabs, or newlines. When the program calls the strtol function, it passes the address of end to the parameter endptr. The function reads and converts the characters until it reaches the first delimiter. It returns the number 123 and sets end to the delimiter. Subsequent calls to strtol skip the delimiters and convert and return the following numbers: 456 and 789. Before moving to the next slide, notice that the example calls strtol three times, and the first call has a different first argument.

THE endptr (2)

end < endptr
T
|
v
1]2 415|6 7189\
0o 1 3 4 5 6 7 8 9 10 11
end |« endptr
y
112 415|6 7189\
0 1 3 4 5 6 7 8 9 10 11

char s[] = "123 456 789";
char* end = s;
while (*end != '\0")
cout << strtol(end, &end, 10) << endl;

Presenter
Presentation Notes
This example sets end equal to s, allowing a single strtol call inside a while loop. The loop runs three times, once for each number in s, and the calls all have the same arguments. Each call converts and returns a number. It also advances end to the next delimiter. This process works well for whitespace delimiters. However, for other non-number characters, strtol only extracts and returns the first number. While it advances end to the first non-number character, it can’t skip it, stopping further conversions.

NUMBERS TO C-STRINGS

char s[25];

char* itoa(int num, char* str, int base);

char* _itoa(int num, char* str, int base);

errno_t _itoa_s(int num, char* str, size_t size, int base);
itoa(123, s, 10);

itoa(oxaf48, s, 16);

_itoa s(123, s, 25, 10);

_itoa_s(oxaf48, s, 25, 16);

Presenter
Presentation Notes
Strangely, C++ doesn’t include any standard number-to-string conversion functions. It’s peculiar because converting numbers to C-strings is comparatively easier than converting strings to numbers. The compiler can validate the numeric expressions, leaving the functions to convert the known-good numeric values to character strings.

Some compilers support a function whose name is a shortening of integer to ASCII, with or without the leading underscore. They convert num to a C-string based on the base parameter and save it in the second parameter, str. They also return the string as a convenience. Microsoft’s Visual Studio compiler has a safe or secure version, denoted by the _s at the end of the name. It adds a parameter specifying the C-string’s size. The secure function uses the size to prevent a buffer overflow.

	C-strings and�number conversion
	C-strings and the console
	c-string (ASCII) To�Number Conversions
	Flexible (advanced) c-string to�number conversions
	the endptr (1)
	the endptr (2)
	Numbers to C-strings

