
COMMAND LINE ARGUMENTS

Command Line Interface (CLI)

Delroy A. Brinkerhoff

Presenter
Presentation Notes
The command line, once a familiar aspect of computer use, is today largely supplanted by the graphical user interface (GUI). Indeed, many users will never need to use or know about a command-line interface (CLI). However, programmers should know the command line, and this video introduces the basics of accessing it from within a C++ program.

GRAPHICAL USER INTERFACE

(GUI)

• Windows supporting

• a pointing device for selecting

• icons, menus, buttons, etc.

• a keyboard

• text

• Command Prompt or shells

• Commands are entered as text or strings

• The processor reads the command

• Runs built-in commands or runs a program

• Converts string arguments to appropriate types

COMMAND LINE INTERFACE

(CLI)

INTERACTIVE COMPUTER INTERFACES

Presenter
Presentation Notes
Modern computers typically support three user interfaces: a graphical user interface, a command-line interface, and a batch interface (not considered here).
Graphical user interfaces allow users to select programs and data with an intuitive pointing device such as a mouse. GUIs represent programs, data, and actions with abstract elements such as icons, menus, and buttons. A keyboard allows text input on almost all computers.
Operating systems provide command-line interfaces as programs that read and process commands entered as text. They vary from one operating system to another: Windows provides the Command Prompt and PowerShell, while Unix and Linux provide numerous shells such as bash.
The processor displays a prompt, indicating that it is ready to receive a command. The user enters a command followed by options and arguments. The processor reads the command line, performs any built-in operations, and runs programs for commands it can’t process directly, passing them the options and arguments. The program is responsible for interpreting arguments and converting the strings to the appropriate types.

ARE CLI’S OBSOLETE?

• Perhaps for some end users

• CLIs are important for computer professionals

• GUI icons are wrappers for CLI operations

• Operating systems use a program’s command line when they run it

• Some programs do not have a GUI

• Servers

• Utilities

Presenter
Presentation Notes
Many might wonder if CLIs are not obsolete today. For some users, they probably are. But I maintain that it is still essential for computer professionals to understand and use CLIs for several reasons. GUI icons and menu items are metaphors for program and data files, wrapping and hiding their names and other information, often presented as command-line options and arguments. Furthermore, when an operating system runs a program, it connects to the program through its command line. Finally, some programs, such as web and file servers or system utilities, don’t have GUI frontends.

WINDOWS LINUX

COMMAND LINE: USER SIDE

Presenter
Presentation Notes
The Windows and Linux command lines look similar. Their prompts are different but irrelevant. The Windows Command Prompt includes the current working directory by default, but PowerShell and the Linux shells do not; they require explicit syntax to search the current directory for the named program. In this example, the command is the name of a program called “name_box.” The name “Cranston Q. Snort” comprises three arguments passed to the program.

COMMAND LINE: SYSTEM SIDE

• D:\>name_box Cranston Q. Snort

• main(int argc, char* argv[])

4

C r a n s t o n \0

n a m e _ b o x \0

Q . \0

S n o r t \0

nullptr

0

1

2

3

4

argc argv

Presenter
Presentation Notes
Command-line processors treat each complete command as a space-delimited sequence of tokens. They scan the command from left to right, looking for spaces that separate the command and its arguments. Processors run the named program (via the operating system), passing it the command-line arguments. Programmers add two parameters to “main” to receive the passed information.
The order and types of the arguments are fixed and cannot be changed, but the names of the arguments are, like all function argument names, at the discretion of the programmer. Nevertheless, the names argc and argv are the traditional command-line argument names, and I encourage you to use them unless there’s a compelling reason to use other names.
The picture illustrates how the operating system organizes the passed information. argc - the argument count - is the number of command-line elements, including the program name. argv - an argument vector - is an array of C-strings, one string for each command-line element.

PROCESSING COMMAND-LINE
ARGUMENTS

#include <iostream>
using namespace std;

int main(int argc, char* argv[])
{
 cout << "argc is " << argc << endl;

 for (int i = 0; i < argc; i++)
 cout << "argv[" << i << "] is " << argv[i] << endl;

 return 0;
}

Presenter
Presentation Notes
The simple example prints the argument count and each argument to the console, demonstrating one way to access command-line arguments. Most “real” programs begin the for-loop at 1, skipping the program’s name. The following section updates the name_box program to allow users to enter the boxed name on a command line, offering a more authentic demonstration.

	Command Line Arguments
	Interactive Computer Interfaces
	Are CLI’s Obsolete?
	command Line: User Side
	Command Line: System Side
	Processing Command-line Arguments

