
STRCMP

C-String Compare

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
The string compare function is not as intuitive as we might like, but it does provide an essential string function.




THE STRCMP FUNCTION

• Comparing two strings for equality is a common and necessary operation

• There is no C-string equality operator or function

• Use the string compare function: int strcmp(char* s1, char* s2)

• strcmp is an ordering function based on the ASCII code that returns

• < 0 if s1 comes before s2

• 0 if s1 and s2 are the same

• > 0 if s2 comes before s1

Presenter Notes
Presentation Notes
C-strings lack a dedicated equals function and so the string compare function fills in for this operation. However, the string compare function provides more than just a Boolean true or false if the content of two strings is or is not equal.
strcmp is said to be an “ordering function” that takes two C-string arguments and returns an integer. The integer contains information that tells how the two strings are ordered based on the ASCII collating sequence, that is, based on the ASCII encoding of each character in the string. The function returns a value < 0 if s1 comes before s2, returns 0 if s1 and s2 contain the same characters, and returns a value > 0 if s2 comes before s1, that is, the strings are out of order.
If s1 is “apple” and s2 is “zebra,” then strcmp will return a negative value.
If we reverse the strings so that s2 is “apple” and s1 becomes “zebra,” then strcmp returns a positive value.




STRCMP: EXAMPLE 1

char* s1 = "HELLO WORLD";
char* s2 = "HELLO WORLD";
if (strcmp(s1, s2) == 0) –or- if (!strcmp(s1, s2)

0 1 2 3 4 5 6 7

H E L L O W O . . .s1 R L D \0

8 9 10 11 12

H E L L O W O . . .s2 R L D \0

Presenter Notes
Presentation Notes
strcmp performs a left-to-right character-by-character comparison. The comparison continues as long as each character is the same, which is to the end of the strings in this example. The code fragment demonstrates two ways that strcmp is used as a test for equality (notice exclamation symbol, which is the not operator in the second or right hand example). Both examples will execute the code in the true branch of the if-statement.




STRCMP: EXAMPLE 2

0 1 2 3 4 5 6 7

H E L L O w o . . .s1 r l d \0

8 9 10 11 12

H E L L O W O . . .s2 R L D \0

char* s1 = "HELLO world;
char* s2 = "HELLO WORLD";
if (strcmp(s1, s2)) . . .

Presenter Notes
Presentation Notes
In this example, the strcmp function will compare the first six characters of both strings, but then finds a difference when comparing the seventh characters. A capital W has a lower ASCII value than does a lower case w, and so s2 comes before s1: strcmp returns a positive value.




STRCMP: EXAMPLE 3

0 1 2 3 4 5 6 7

H E L L O \0 . . .s1

8 9 10 11 12

H E L L O W O . . .s2 R L D \0

char* s1 = "HELLO";
char* s2 = "HELLO WORLD";
if (strcmp(s1, s2)) . . .

Presenter Notes
Presentation Notes
In the final example, strcmp compares the first five characters of both strings before s1 ends. The rule is that “nothing comes before something.” So, when two strings are equal until one ends, the shorter string is ordered before the longer string. strcmp returns a negative number in this example.



	strcmp
	The strcmp function
	strcmp: example 1
	Strcmp: example 2
	strcmp: example 3

