
THE C++ STRING CLASS

#include <string>

Delroy A. Brinkerhoff

Presenter
Presentation Notes
The fact that C and many other non-object-oriented programming languages include a fundamental string type suggests the importance of this type in many programs. It's common for object-oriented programming languages to implement a string data type as a class. Although C++ inherits C-strings from C, it also provides a very flexible string class, which is declared in the <string> header file.




C-STRINGS

• Fundament (built-in) type

• Null-terminated arrays

• Array size determines the maximum 
length

• Little operator support

• Functions operate on them

• Programs instantiate the string class

• string object ≡ instance of the string class

• Manage their own memory and can grow 
automatically

• Supports many operators

• Objects are bound to functions; we think of 
the object doing the action

string OBJECTS

C-STRING VS. string OBJECTS

Presenter
Presentation Notes
Independent of how they are implemented, programmers often treat strings as a fundamental type. So, it's natural and beneficial to introduce the string class in this chapter, before a more general discussion of classes and objects. This approach allows the text to highlight the similarities and differences between the two representations and to facilitate their use as class members in Chapter 10.
At this point in the text, we're familiar with the C-string implementation and its limitations. But we need to explore some object-oriented concepts and terminology to transition to the string class. Previous examples demonstrate a variable definition as a data type followed by a variable name. When the data type is a class, programmers typically refer to the variable as an "object." Saying that a program "creates an object" is equivalent to saying a program "instantiates a class," making "object" and "instance" synonyms.
Unlike C-strings, string objects manage their own memory and can grow automatically when necessary. Whereas C-strings only support the dereference and address-of operators, string objects support many operators that behave intuitively. Nevertheless, the most profound difference between the two string representations is conceptual. We think of C-strings as inert or passive, with functions operating on them (they always appear inside the function's parentheses). In contrast, string objects are often bound to a function, and we think of the program "asking" them to perform a task on its behalf.




OBJECT-ORIENTED PREVIEW

#include <string>
using namespace std;

#include <string> Access string features

string s1; std::string s1; Creates an empty string object

string s2(“hello);
string s2 = “hello”;

std::string s2(“hello”);
std::string s2 = “hello”;

Copies a C-string to a string object

string s3(s2);
string s3 = s2;

std::string s3(s2);
std::string s3 = s2;

Copies one string to another

string* s4 = new string(“Hi”);
string* s4 = new string(s2);

std::string* s4 = new(“Hi”);
std::string* s4 = new(s2);

Creates a string object on the heap by 
copying a C-string or string object

Presenter
Presentation Notes
The table illustrates four ways a program can create or instantiate string objects. The first three examples create automatic or stack objects; the fourth example creates a dynamic or heap object. Programs must include the string header file and either add the "using" statement or the namespace name. Significantly, the assignment operator copies the contents of a string object, not just its address.




BINDING AND CALLING FUNCTIONS:
THE DOT AND ARROW OPERATORS

cout << s1 << endl;
cout << s2 << endl;
cout << s3 << endl;
cout << *s4 << endl;

cout << s1.size() << " " << s1.capacity() << endl;
cout << s2.length() << " " << s2.capacity() << endl;
cout << s3.size() << " " << s3.length() << endl;
cout << s4->length() << " " << s4->capacity() << endl;

Presenter
Presentation Notes
Programs can print the contents of string objects with cout and the inserter operator. Programs must dereference string pointers before printing them. The function examples demonstrate how the dot and arrow operators bind objects and functions: dot binds functions to objects and arrow binds functions to class pointers. The binding occurs during function calls and ends when the function finishes.
Two functions, synonyms, "size" and "length," report how many characters the object stores. A third function, "capacity," reports how many characters an object can store before it must grow.




string OPERATORS

Operator Meaning Example

= Assignment s1 = s2

+ Concatenation s = s1 + s2;

+= Concatenation with assignment s += s2;

== Equality if (s1 == s2) . . .

!= Inequality if (s1 != s2) . . .

<, <=, >, and >= Relational if (s1 < s2) . . .

[] and at() Character access char c = s1[i];
char c = s1.at(i);

<< Output cout << s2;

Presenter
Presentation Notes
Unlike C-strings, string objects support numerous operators that behave in predictable ways. Furthermore, these operators act on the string's contents, not its address. The only requirement is that one operand must be a string object.
Like C-strings, the characters in a string object are zero-indexed, and programs can access them with the index operator or the "at" function. The difference is that the index operator doesn't validate that the index is in bounds, whereas the "at" function does.



	The C++ string class
	C-String vs. string Objects
	Object-Oriented Preview
	Binding and Calling functions:�The dot and arrow operators
	string Operators

