THE C++ STRING CLASS

#include <string>

Delroy A. Brinkerhoff


Presenter
Presentation Notes
The fact that C and many other non-object-oriented programming languages include a fundamental string type suggests the importance of this type in many programs. It's common for object-oriented programming languages to implement a string data type as a class. Although C++ inherits C-strings from C, it also provides a very flexible string class, which is declared in the <string> header file.



C-STRING VS. string OBJECTS

C-STRINGS

Fundament (built-in) type
Null-terminated arrays

Array size determines the maximum
length

Little operator support

Functions operate on them

string OBJECTS

Programs instantiate the string class

string object = instance of the string class

Manage their own memory and can grow
automatically

Supports many operators

Obijects are bound to functions; we think of
the object doing the action


Presenter
Presentation Notes
Independent of how they are implemented, programmers often treat strings as a fundamental type. So, it's natural and beneficial to introduce the string class in this chapter, before a more general discussion of classes and objects. This approach allows the text to highlight the similarities and differences between the two representations and to facilitate their use as class members in Chapter 10.
At this point in the text, we're familiar with the C-string implementation and its limitations. But we need to explore some object-oriented concepts and terminology to transition to the string class. Previous examples demonstrate a variable definition as a data type followed by a variable name. When the data type is a class, programmers typically refer to the variable as an "object." Saying that a program "creates an object" is equivalent to saying a program "instantiates a class," making "object" and "instance" synonyms.
Unlike C-strings, string objects manage their own memory and can grow automatically when necessary. Whereas C-strings only support the dereference and address-of operators, string objects support many operators that behave intuitively. Nevertheless, the most profound difference between the two string representations is conceptual. We think of C-strings as inert or passive, with functions operating on them (they always appear inside the function's parentheses). In contrast, string objects are often bound to a function, and we think of the program "asking" them to perform a task on its behalf.



string

string
string

string
string

string* s4

OBJECT-ORIENTED PREVIEW

sl;

s2(“hello);
s2 = “hello”;

s3(s2);
s3 = s2;

new string(“Hi”);

string* s4 = new string(s2);

std:

std:
std:

std:
std:

std:
std:

:string si;

:string s2(“hello”);
:string s2 = “hello”;
:string s3(s2);
:string s3 = s2;

:string* s4 = new(“Hi”);
:string* s4 = new(s2);

Creates an empty string object

Copies a C-string to a string object

Copies one string to another

Creates a string object on the heap by
copying a C-string or string object


Presenter
Presentation Notes
The table illustrates four ways a program can create or instantiate string objects. The first three examples create automatic or stack objects; the fourth example creates a dynamic or heap object. Programs must include the string header file and either add the "using" statement or the namespace name. Significantly, the assignment operator copies the contents of a string object, not just its address.



BINDING AND CALLING FUNCTIONS:
THE DOT AND ARROW OPERATORS

cout << sl << endl;

cout << s2 << endl;

cout << s3 << endl;

cout << *s4 << endl;
cout << sl.size() << " " << sl.capacity() << endl;
cout << s2.length() << " " << s2.capacity() << endl;
cout << s3.size() << " " << s3.length() << endl;

cout << s4->length() << " " << s4->capacity() << endl;



Presenter
Presentation Notes
Programs can print the contents of string objects with cout and the inserter operator. Programs must dereference string pointers before printing them. The function examples demonstrate how the dot and arrow operators bind objects and functions: dot binds functions to objects and arrow binds functions to class pointers. The binding occurs during function calls and ends when the function finishes.
Two functions, synonyms, "size" and "length," report how many characters the object stores. A third function, "capacity," reports how many characters an object can store before it must grow.



string OPERATORS

<, <=, >,and >=
[]and at()

<<

Assignment sl = s2
Concatenation s = sl + s2;

Concatenation with assignment S += S2;

Equality if (sl == s2) .
Inequality if (s1 !=s2) . .
Relational if (sl < s2)
Character access char ¢ = s1[i];

char ¢ = sl.at(i);

Output cout << s2;



Presenter
Presentation Notes
Unlike C-strings, string objects support numerous operators that behave in predictable ways. Furthermore, these operators act on the string's contents, not its address. The only requirement is that one operand must be a string object.
Like C-strings, the characters in a string object are zero-indexed, and programs can access them with the index operator or the "at" function. The difference is that the index operator doesn't validate that the index is in bounds, whereas the "at" function does.



	The C++ string class
	C-String vs. string Objects
	Object-Oriented Preview
	Binding and Calling functions:�The dot and arrow operators
	string Operators

