
string CLASS FUNCTIONS

An Introduction

Delroy A. Brinkerhoff

Presenter
Presentation Notes
The C++ string class provides many functions and operators to help programmers work with string objects. There are too many for us to cover in detail here, and you don't need to memorize all of them. Some background and a few common examples demonstrate how to use the documentation when you need more information or find additional operations.

C++ string CLASS REVIEW

• #include <string>

• Class data and functions called members

• Header prototypes non-member functions

• Hides data members

• Binds function calls to string objects

• size_t is a portable type suitable for
saving a size

• Input with getline(cin, s);

• output with cout << s << endl;

Presenter
Presentation Notes
To use the string class and functions, programmers include the string header file in their programs. Functions prototyped in the class are called string member functions. The header also has prototypes for "regular" or non-member functions that operate on strings. Classes typically hide their data members, so programs can't rely on them.
Programs must bind member functions to a string object to call them but not to call a non-member function. The documentation for some functions uses the portable data type size_t, an unsigned integer type the compiler converts to a "real" type when compiling a program.
Finally, recall that programs read strings with the getline function but that the inserter operator is sufficient for string output. You may find it beneficial to review the other concepts listed in the review at the top of the text section.

BASIC OPERATIONS:
length AND capacity

string s;

for (size_t i = 0; i < s.length(); i++)

for (size_t i = 0; i < s.size(); i++)

cout << s.length() << " " <<
s.capacity() << endl;

11 15

size_t length();
size_t size();
size_t capacity();

Capacity

Length
Characters

Presenter
Presentation Notes
Strings consist of a sequence of characters, probably in an array. Part of the string may contain characters while the rest is empty. The string length and size functions report the number of characters the string currently saves. Programs often use these functions to drive for-loops. The capacity function reports the number of characters the string can save before it must grow.
The cout statement prints 11 and 15, demonstrating that many compilers create small string objects with space to grow before allocating more memory. This scheme makes adding a few characters at the end fast and efficient.

A PREREQUISITE:
OVERLOADED OPERATORS

• Overloaded operators: operator

• Function name is “operator” followed by the operator

• char& operator[](size_t pos);

• string operator+(const string& lhs, const string& rhs);

• Overloaded operator functions allow a novel calling syntax:

• s1 s2

Presenter
Presentation Notes
C++ allows programmers to overload operators by creating functions with a particular name: the keyword "operator" followed by the operator symbols. In this example, we replace the smiley face with the '+' and '[]' operators. When we overload an operator, at least one operand must be an instance of a class that, in a sense, "owns" the operator.
The calling syntax sets overloaded operators apart from "regular" functions. This stylized example doesn't look like a function call, but it is. We won't create any new operators in this chapter, so focus on the examples to see how to use the string operators. Chapter 11 explains overloaded functions in greater detail.

CHARACTER ACCESS

• char& operator[](size_t pos);

• Does NOT validate the index

• char& at(size_t pos);

• Validates the index

• char& front();

• char& back();

• An r-value expression is a value

• An l-value expression is an address

for (size_t i = 0; i < s.length(); i++)
 cout << s[i] << endl;

for (size_t i = 0; i < s.size(); i++)
 cout << s.at(i) << endl;

s[0] = 'X’;

s.at(0) = 'Z’;

c = s.front(); s.front = ‘A’;
c = s.back(); s.back() = ‘B’;

Presenter
Presentation Notes
Programs often need to access the individual characters in a string, and the class provides two functions, one as an overloaded operator, for this purpose. The square brackets form the index operator, which we previously used to access array elements or characters in a C-string. The string class overrides it to access the characters in a string object. Returning a character reference allows programs to use it as an r-value – an expression appearing on the right-hand side of the assignment operator or wherever the program needs a value. Programs can also use it as an l-value – an expression appearing on the left-hand side of the assignment operator or wherever the program needs an address. The operator doesn't validate the index, and it's a runtime error to index the string out of bounds – less than 0 or greater than or equal to the length – 1.
The string class also defines the "at" member function. Unlike the index operator, the "at" function validates its index argument and throws an exception if it's out of bounds. Otherwise, the function behaves the same as the operator.
The front and back functions access the string's first and last character. The example assumes that c is a character variable.

ASSIGNMENT

string& operator=(const string& rhs);
string& operator=(const char* s);
string& operator=(char c);

string s1(“hello”);
string s2;
s2 = s1;
s2 = “hello”;
s2 = ‘X’;

Presenter
Presentation Notes
Assignment is a fundamental operation. However, when programs use it with C-strings, its behavior is unexpected – it doesn't copy one C-string to another as it would for integers or doubles. The string class's overloaded assignment operator does behave as expected. It copies the right-hand operand (a string object, a C-string, or a character) to the left-hand. Notice that the prototypes show only one function argument, signaling that the operator is a member function. The operator's left-hand operand is always a string object. Chapter 11 explains the difference between member and non-member functions.

CONCATENATION

string operator+(const string& lhs, const string& rhs);
string operator+(const string& lhs, const char* s);
string operator+(const string& lhs, char c);

string s1(“hello”);
string s2(“ world”);
string s3;
s3 = s1 + s2;
s3 = s1 + “ world”;
s3 = s1 + s2 + ‘!’;

Presenter
Presentation Notes
The concatenation operator joins its two arguments, creating a new string object to save the result. The arguments can be strings, C-strings, or characters, but at least one in each call must be a string object. The prototypes show two arguments, signaling a non-member function. The prototypes only show the first argument or left-hand operand as a string to simplify the slide, but programs can switch the order as long as one argument is a string object. The first two assignment statements create the string "hello world." The last statement adds an exclamation.

CONCATENATION WITH ASSIGNMENT

string& operator+=(const string& rhs);
string& operator+=(const char* s);
string& operator+=(char c);

string s1(“hello”);
string s2(“ world”);
s1 += s2;
s1 += “ world”;
s1 += ‘ ’;
s1 += “world”;

Presenter
Presentation Notes
The concatenation with assignment operator combines the concatenation and assignment operations in one operator: it appends the right-hand operand to the end of the left-hand operand. Like assignment, it's a member function, so the left-hand operand must be a string object; the right-hand operand can be a string, a C-string, or a character. Three groups of statements each produce the string "hello world."

THE string CLASS CONSTANT npos

0 1 2 npos-1

npos

. . . .

• string s(…);

• int i = s.length();

• 0 ≤ i ≤ s.length()-1

• string::npos

Presenter
Presentation Notes
The string class defines a symbolic constant named npos, representing the length of the longest possible string. Valid string index values range from 0 to the string's length - 1. So, valid index values for the longest possible string are 0 to npos - 1. Whenever a program uses npos, it must bind it to the string class with the scope resolution operator. The next chapter explains this requirement.

THE find AND rfind FUNCTIONS

• size_t find(const string& str, size_t pos = npos);

• size_t find(const char* str, size_t pos = npos);

• size_t find(const char c, size_t pos = npos);

• Returns npos if the string or character is not found

string s = "Hello, World!";
size_t index = s.find("World");
if (index != string::npos)
 …

string s = "Hello, World!";
size_t index = s.rfind('l');
if (index != string::npos)
cout << s.rfind('l', 5) << endl;

Presenter
Presentation Notes
When programs perform textual operations, they often need to search a string for a specific pattern. The pattern may consist of a sub-string (an instance of the string class or a C-string) or a single character. The string class defines four overloaded searching functions: find, rfind, find_first_of, and find_last_of. Although the slide only shows prototypes for the find function, the rfind prototypes are the same. The find function searches the string left to right (in English reading order), and rfind searches right to left or in the reverse direction. Both functions return the index location of the pattern's beginning in the string when the search succeeds or npos when it fails.
The pos parameter specifies the last character the function should include in the search. Any value greater than or equal to the string's length (e.g., npos, the default) causes the function to search the entire string. I find the pos parameter's behavior counterintuitive when used by the rfind function. In this case, it still searches right to left but only searches to the pos index location – counted left to right. So, in this example, it finds the second 'l' in "Hello."

CONVERTING BETWEEN
NUMBERS AND STRINGS

• string to_string(int val);

• string to_string(double val);

• string s1 = to_string(123);

• string s2 = to_string(3.14);

• int stoi(const string& str, size_t* index = nullptr, int base = 10);
• double stod(const string& str, size_t* index = nullptr);

• int i = stoi(s1);
• int i = stoi(“0XAF27”, 16);
• double d = stod(s2);

Presenter
Presentation Notes
Some problems require programs to convert numbers to strings or strings to numbers. The <string> header file prototypes several functions performing the conversions. One family of overloaded functions named to_string converts numbers to strings. The slide presents the prototypes for two functions, but there is an overloaded function for each fundamental or built-in numeric type.
Converting a string to a number is more challenging – the string may contain characters that are not valid parts of a number. The slide shows two frequently used prototypes, but there are similar functions for other numeric types. The functions' names are a shortening of "string to integer" and "string to double," respectively. The base parameter (radix in some documentation) is the conversion's numeric base: 10 and 16 (decimal or hexadecimal) being common values. The index pointer requires some additional explanation.

THE index ARGUMENT

• Passed by pointer, making it an INOUT argument

• The function sets it to the location of the first non-convertible character

• The function throws an exception if the string begins with a non-number
character: “x123hello”

string s = "123hello";
int index = 0;
int counter = stoi(s, &index);

1 2 3 h e l l o
0 1 2 3 4 5 6

index

7
1 2 3 h e l l o
0 1 2 3 4 5 6

index

7
s s

Presenter
Presentation Notes
A well-formed string contains only characters used to represent numbers: digits appropriate for its conversion base (e.g., 1-9 for base-10, or 1-9, A-F, and "0X" for base-16), a minus sign, a decimal point (technically a radix point), and an "E" denoting an exponent. The alphabetic characters can be upper or lower case.
The program passes index by pointer, making in an INOUT argument the function can change. The function saves the location of the first unconverted character in the index. If the function converts the entire string, the saved value is the string's length. In the example, the function can convert three digits to a number but not "hello," So, index saves the value 3, the position where "hello" begins. The function throws an exception if the string begins with a non-number character.

	string class functions
	C++ string class Review
	Basic Operations:�length and capacity
	A prerequisite:�Overloaded Operators
	character access
	Assignment
	Concatenation
	Concatenation with Assignment
	The string class constant npos
	The find and rfind functions
	Converting Between�Numbers and strings
	The index argument

