C-STRINGS AND SCOPE

An Interview Question

Delroy A. Brinkerhoff


Presenter Notes
Presentation Notes
I first saw the problem explored here as an interview question while applying for a new job. I was surprised when I was again confronted with the same question in an interview with another company a couple of years later. The same qualities that make this a good interview question also make it a good problem for exploring a fundamental interaction between C-strings or arrays and function scope.



WHAT’S WRONG WITH THIS CODE!?

char* get name ()

{

char name[100];
cin.getline (name, 100);

return name;



Presenter Notes
Presentation Notes
In both interviews, an engineer wrote code on a blackboard like we see here, and asked, “What’s wrong with this code?” I’ll give you a hint: it’s not a syntax error. Pause the playback for a moment and see if you can tell what’s wrong with the code. The code contains a logical error and it’s important that we understand that error.



TESTS OUR UNDERSTANDING OF
FUNDAMENTAL CONCEPTS

How to define and read C-strings
As a character array
Read with the getline function
When is the memory for automatic variables allocated and deallocated?
Allocated when the variable comes into scope
Deallocated when the variable goes out of scope
The relationship between pointers and arrays
The name of an array is address of the array
How arrays are passed to and returned from functions

Always passed in and returned by pointer



Presenter Notes
Presentation Notes
This one question tests our understanding of several C++ features and concepts, some complex but others that are fundamental.
How do we define and read C-strings? By now we know that a C-string is defined as a character array and that to reliably read a C-string that we must use the getline function rather than the extractor operator.
When is memory for automatic variables allocated and deallocated? Memory for an automatic variable is allocated when the automatic variable comes into scope, that is, when a function is called. Memory is deallocated when the variable goes out of scope, that is, when the function ends.
What is the relationship between pointers and arrays? The name of an array, without the use of square brackets, is an address, which can be stored in a pointer variable.
How are arrays passed to and returned from functions? Arrays in general, and C-strings in particular, are always passed and returned by pointer. And this is the root of the problem in question.



WHAT’S WRONG WITH THE CODE?

char* get name () Correct

{

Definition of name
char name [100] ;

cin.getline (name, 100); Return type

getline and all arguments

return statement

return name; Wrong

J Returning the address of deallocated
memory


Presenter Notes
Presentation Notes
So, what’s wrong with the code? First, let’s discuss what is correct. First, the definition of “name” is correct, creating a C-string without errors. Sometimes novice programmers will find fault with the return type and the return statement, but the name of an array is a pointer, a character pointer in this example. So, the return type is correct and matches the return statement. The call to the getline function, including the arguments, is correct.
The problem is that the variable “name” is a local, automatic variable that is defined in the get_name function. Although it is syntactically correct to return the address of “name,” when get_name returns, the memory for the variable “name” is deallocated.
The problem is that the function returns the address of data that is immediately deallocated upon the function return. What becomes of that deallocated memory depends on the program and on the computer running it. If the program runs correctly once, there’s no guarantee that it will run correctly a second time. Even if the program runs consistently on one computer, there’s no guarantee that it will run on another.



CORRECTING THE LOGICAL ERROR

Knowing how to correct the error is not the same as knowing what the error is
Three standard corrections

static data

dynamic data

calling-scope data



Presenter Notes
Presentation Notes
First, let’s be clear that there are two important aspects of the question: First, what is wrong with the original code, and second, how to fix the code. Just knowing how to fix the code doesn’t mean that we understand the original problem. Failing to understand the fundamental problem means that we are less capable of choosing the best solution.
Three solutions are explored here: using static data, using dynamic data, and defining the data in the calling function’s scope rather than in the called function’s scope. Each solution has advantages and disadvantages, and so we must match the best solution to the original problem.



STATIC DATA

char* get name () The static keyword makes data that is

{ just the opposite of automatic data

static char name[100]; ,
ol geitiine (name, 100) ¢ The static keyword does not effect scope

—“name” is only accessible in “get_name”

Memory is allocated when the program is

first loaded into memory for execution

return name; : .
Memory is not deallocated until the

program exits


Presenter Notes
Presentation Notes
The “static” and “auto” keywords were first introduced in chapter 1. We also learned there that data or variables are “auto” or automatic by default and so the “auto” keyword is rarely used. Memory allocation for static variables is different than for automatic variables: The memory for static variables is allocated when the program is first loaded into memory for execution and remains allocated until the program ends. Although the variable name retains its scope, that is, the static keyword doesn’t change where the variable name is visible or accessible, the memory is not deallocated when the defining function ends and it retains all stored data.



ADVANTAGES AND DISADVANTAGES

ADVANTAGES DISADVANTAGES

Simple to understand Increases the total memory requirement

Easy to use of a program

Functions w/static variables can’t be

Potentially the fastest )
recursive or reentrant

Each call overwrites previous data
Must finish all data processing

Cannot store data without copying


Presenter Notes
Presentation Notes
Once you are familiar with how static data behaves in general, then the way that static variables solve the get_name problem is simple to understand and easy to use. As this technique doesn’t allocate any new memory, if the returned C-string isn’t copied on return, it also provides fastest operation.
However, the static keyword isn’t a panacea – it does have some consequences. Early programming languages like FORTRAN didn’t have automatic variables. When languages supporting automatic variables were first invented, it was shown that the same program written with automatic variables could run in about 20% of the memory that was needed when the program was written in a language without automatic variables. Making a few variables static won’t greatly increase the program’s memory requirements, but making all variables static certainly would.
Functions that have static variables cannot be recursive nor can they be reentrant. Recursive functions were briefly covered in chapter 6; reentrancy is a property needed by specialized functions most often seen in operating systems, and are beyond the scope of this course. Both issues only concern a very small percentage of functions, which are easily ignored for now.
But there is one disadvantage of static variables that you can understand and of which you should be aware. A client function calls get_name and uses, in some way, the C-string that it returns. The next call to get_name will overwrite the data currently stored in the static C-string variable whose address get_name returns. This behavior has two consequences for us. Frist, it means that the client function must completely process the returned C-string before calling get_name again. Client functions typically do this, which means that this is no more than a minor constraint. Second, the C-string that get_name returns is not suitable for permanent storage and must be copied to a different memory location before it is stored. Except for the storage problem, the other situations are rare, which makes using static data a good choice for solving the initial memory deallocation problem.



DYNAMIC DATA

char* get name ()

{

char* name =

Memory allocated with new is only
deallocated with delete

new char([100]; The variable “name” is deallocated but

cin.getline (name,

return name;

name

stack

100) 7 not the memory to which it points

heap


Presenter Notes
Presentation Notes
Another way of solving the problem is to use dynamic data allocated on the heap with the new operator. Memory allocated with the new operator remains allocated until it is explicitly deallocated with the delete operator. In this version of get_name, the variable name is still a local variable that is deallocated when the function returns. But the memory whose address is temporarily stored in name is not deallocated when the function returns. This situation is easier to understand if you recall that data accessed through pointers involves not one but two distinct variables.
The situation illustrated here is common: the pointer variable is allocated as an automatic variable on the stack, but it points to dynamic memory allocated on the heap. In this way it is possible for the variable name to go out of scope and be deallocated but for the dynamic memory to remain allocated and for the data stored in that memory to remain viable after the function’s return.



ADVANTAGES AND DISADVANTAGES

ADVANTAGES DISADVANTAGES
Each returned C-string has it own Potentially slower
memory Must remember to delete the returned
Can process multiple data items at the same data to avoid a memory leak
time

Can store the data directly


Presenter Notes
Presentation Notes
Dynamic data, just like static data, has advantages and disadvantages. The new operator allocates a new block of memory for each C-string that get_name reads, meaning that each returned C-string or data item has its own memory. If the client doesn’t need distinct memory for each returned C-string, then this solution is very slightly slower than the static data solution. But if the client function needs to read the next string before it finishes processing the last string, then calling get_name again won’t overwrite the data in the last string. And it’s okay to store the returned strings without copying them because each returned string already occupies its own, unshared memory.
The only disadvantage of the dynamic memory approach is that programmers must remember to explicitly delete the returned strings to prevent them from becoming unrecoverable garbage.



CALLING-SCOPE DATA

void client () char* get name (char* name)

{ {
char data[100]; cin.getline (name, 100);

get name (data);

. return name;
// use data ¥

O < rome

data



Presenter Notes
Presentation Notes
The third possible solution to the C-string scope problem is to change the scope of the string. The best way to do this is to define the C-string in the client function and to pass it into the get_name or supplier function as an argument. The variable name “data” is not directly available in the get_name function, but the address of “data” is passed into get_name and stored in the variable named “name.” With this solution, the return type becomes somewhat arbitrary – we can retain the character pointer or change the return type to void – because pass by pointer allows both data input and output through function parameters. Notice that the C-string functions string-copy and string-cat both follow this pattern: the target string is returned both through the function return and the through the first function parameter.



ADVANTAGES AND DISADVANTAGES

ADVANTAGES
Makes the client function responsible for
memory management

Easy to understand and to use
All the advantages of automatic data

All of the flexibility of dynamic data

Can be combined with dynamic option

DISADVANTAGES
The function call has one or two more
arguments than other solutions

The defined size of the array must agree
with the second getline argument

char data[100];

cin.getline (name, 100);


Presenter Notes
Presentation Notes
Defining the C-string in the client or calling function has, in my opinion, greater advantages than disadvantages. It is simple to implement and it puts the responsibility for how memory is best managed on the client function, which allows the get_name function to be general and used in many situations.
This solution is almost as easy to use as static data but retains the flexibility of dynamic data. If the client doesn’t need to have overlapping data, then it can define and pass a single C-string; if it does need overlapping data, then it defines as many C-strings as needed and passes a different string while retaining the data in another string. If the client needs to store the data in a persistent data structure, it can create a new string or pass the address of the storage location directly, which avoids the need to copy the returned string.
The primary disadvantages are an increase in the number of function parameters – at least one parameter for the array. If the function only has a C-string parameter, then both functions must use the same, predetermined array size. To make the get_name function more general, it’s also necessary to inform it about the size of the passed in array, which requires a second argument.



COMBINING THE
SCOPE AND DYNAMIC SOLUTIONS

char* get name (char* name, int size) void client ()
{ {
1f (name == NULL) char* data = get name (NULL, 100);
name = new char[size];

// use data
cin.getline (name, size);

return name; }


Presenter Notes
Presentation Notes
Finally, it’s possible to combine the calling-scope solution with the dynamic solutions. If client passes nullptr as the argument, get_name will allocate memory for the string, otherwise it uses the memory that is passed in. If the size of the array is not passed, then both the client and get_name must share a common or predetermined size.



	C-Strings And Scope
	What’s Wrong With This Code?
	Tests Our Understanding Of�Fundamental Concepts
	What’s Wrong With The Code?
	Correcting the logical Error
	Static Data
	Advantages and Disadvantages
	Dynamic Data
	Advantages and Disadvantages
	Calling-Scope Data
	Advantages and Disadvantages
	Combining the�Scope and Dynamic Solutions

