
Sets
Intersection, Union, Null Set

A  B (symmetric difference) = A ∪ B – A ∩ B

Addition principal - |A ∪ B ∪ C| = |A| + |B| + |C| - |A ∩ B| - |B ∩ C| - |A ∩ C| + |A ∩ B ∩ C|
Ā = U – A (complement of A)

Subsets
Sets containing other sets

Set builder notation
Cardinality

Functions and integers
Everywhere defined – everything in A is used and each element in A goes to only 1 element in B

Onto – every element in B can be gotten to with the function ie. Range(f) = B
1-to-1 – each element in B can be gotten to by at most one element in A
Invertible – 1-to-1 and onto

A function is invertible if its inverse (f -1) is also a function
g ○ f – (g ○ f)(a) = g(f(a))

f ○ g – (f ○ g)(a) = f(g(a))
Floor – round down
Ceiling – round up

LCM = 2max(a,b) * 3max(a,b) * 5max(a,b) * ... {all primes}max(a,b)
GCD = 2min(a,b) * 3min(a,b) * 5min(a,b) * ... {all primes}min(a,b)

Euclid's alogorithm – d = sa + tb
Base conversion – alternate using / and %

Sequences
Sequence – order matters

Finite – countable, has specific start and end points
Infinite – has no end point. The book calls it countable, but how do you count infinity?
Countable – can be arranged in a list, has a start

Uncountable – anything not countable, an example is all real numbers between 0 and 1
Recursive – element depends on previous values, may be infinite, but has a specific starting point

Explicit – element depends only upon itself, has a specific starting point
String – sequence of letters, set corresponding to a sequence
Regular Expressions – defining a set of strings

Counting and Probability

Multiplication principle
Permutation – order matters P(n,r) = n!/(n-r)!
Combination – order doesn't matter C(n,r) = n!/(r!(n-r)!)

Permutation with repeats – P(n,r) = nr
Combination with repeats – C(n,r) = rewrite this one as a regular combination using C(n+r-1, r)

Event (E) – the desired outcome or combination of outcomes
Sample space (S) – all possible outcomes
Probability – P = |E|/|S|

Pigeonhole principle

Matrices – Boolean and Regular

Add, ∧, ∨ - only exact same sizes

Multiply – MxN * JxK is possible only if N=J, result is a MxK matrix
Transpose – flip around the diagonal (first row becomes first column, etc). Is symmetric if A =
AT

Identity matrix – binary matrix where the diagonal is all 1's, all other values are 0, is always
square

Inverse – only computable for a 2x2 matrix (bigger can be done, but not in this class)

Propositions and logical operations

Truth tables for logical operators
Statement – true or false declaration (not opinion, question, command, changing value, etc.)

Graphs
Matix in-degree = number of arrows into node, number of 1's in the column

 out-degree = number of arrows out of node, number of 1's in the row
Paths

Cycle – begin and end at the same vertex
Connectivity relation showing all paths of all lengths
Rn path of length n

Relations

reflexive – R is reflexive if aRa for all a in A
irreflexive – R is irreflexive if aRa for all a in A
symmetric – aRb and bRa

asymmetric – aRb and bRa (a b or both 0, diagonal is 0)
antisymmetric – if aRb and bRa then a=b, else aRb and bRa, or both 0

transitive – if aRb and bRc then aRc
Digraph representations of relations

Matrix representations of relations

Graphs

reflexive – all nodes need a cycle of length 1
irreflexive – no node can have a cycle of length 1

symmetric – all edges go both ways, cycles of length 1 are ok
asymmetric – no cycle of length 1, all edges are single path
antisymmetric – all edges between vertices are single path, cycle of length 1 is ok

transitive – if there is a path of length 2 from a to c, passing through b, then there must also be a
 path of length 1 between a and c. If no path of length 2 exists, it is still transitive.

Growth of Function

Big-Theta and Big-Oh Notation

Trees
root – first or top vertex in the tree, has a height of 0

leaf – bottom vertex, has 0 children
n-tree – all vertices have at most n children

complete – all vertices except leaves have the same number of children
balanced – height of all leaves differ by at most 1
sub-tree – any vertex of a tree may be partitioned off (with all children etc) to become a new tree

Grammar Machine

G=(V, S, v0, ->) M = (S, I, F) machine or (S, I, F, s0, T) Moore

machine
G – grammar S – state set

V – everything, similar to the universe I – input set
S – set of terminal symbols F – state transition function
N – set of non-terminal symbols T – terminal state set

-> - the production s0 – starting state

