Sets

Intersection, Union, Null Set
$\mathrm{A} \oplus \mathrm{B}$ (symmetric difference) $=\mathrm{A} \cup \mathrm{B}-\mathrm{A} \cap \mathrm{B}$
Addition principal $-|\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}|=|\mathrm{A}|+|\mathrm{B}|+|\mathrm{C}|-|\mathrm{A} \cap \mathrm{B}|-|\mathrm{B} \cap \mathrm{C}|-|\mathrm{A} \cap \mathrm{C}|+|\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}|$
$\overline{\mathrm{A}}=\mathrm{U}-\mathrm{A}$ (complement of A)
Subsets
Sets containing other sets
Set builder notation
Cardinality

Functions and integers

Everywhere defined - everything in A is used and each element in A goes to only 1 element in B
Onto - every element in B can be gotten to with the function ie. Range $(f)=\mathrm{B}$
1-to- 1 - each element in B can be gotten to by at most one element in A
Invertible - 1 -to- 1 and onto
A function is invertible if its inverse $\left(f^{-1}\right)$ is also a function
$g \circ f-(g \circ f)(a)=g(f(a))$
$\mathrm{f} \circ \mathrm{g}-(\mathrm{f} \circ \mathrm{g})(\mathrm{a})=\mathrm{f}(\mathrm{g}(\mathrm{a}))$
Floor - round down
Ceiling - round up

$\mathrm{GCD}=2^{\min (\mathrm{a}, \mathrm{b})} * 3^{\min (\mathrm{a}, \mathrm{b})} * 5^{\min (\mathrm{a}, \mathrm{b})} * \ldots\{\text { all primes }\}^{\min (\mathrm{a}, \mathrm{b})}$
Euclid's alogorithm $-\mathrm{d}=\mathrm{sa}+\mathrm{tb}$
Base conversion - alternate using / and \%

Sequences

Sequence - order matters
Finite - countable, has specific start and end points
Infinite - has no end point. The book calls it countable, but how do you count infinity?
Countable - can be arranged in a list, has a start
Uncountable - anything not countable, an example is all real numbers between 0 and 1
Recursive - element depends on previous values, may be infinite, but has a specific starting point
Explicit - element depends only upon itself, has a specific starting point
String - sequence of letters, set corresponding to a sequence
Regular Expressions - defining a set of strings

Counting and Probability

Multiplication principle
Permutation - order matters $\mathrm{P}(\mathrm{n}, \mathrm{r})=\mathrm{n}!/(\mathrm{n}-\mathrm{r})$!
Combination - order doesn't matter $\mathrm{C}(\mathrm{n}, \mathrm{r})=\mathrm{n}!/(\mathrm{r}!(\mathrm{n}-\mathrm{r})!)$
Permutation with repeats $-\mathrm{P}(\mathrm{n}, \mathrm{r})=\mathrm{n}^{\mathrm{r}}$
Combination with repeats $-\mathrm{C}(\mathrm{n}, \mathrm{r})=$ rewrite this one as a regular combination using $\mathrm{C}(\mathrm{n}+\mathrm{r}-1, \mathrm{r})$
Event (E) - the desired outcome or combination of outcomes
Sample space (S) - all possible outcomes
Probability $-\mathrm{P}=|\mathrm{E}| / \mathrm{S} \mid$
Pigeonhole principle

Matrices - Boolean and Regular

Add, \wedge, \vee - only exact same sizes
Multiply -MxN * JxK is possible only if $\mathrm{N}=\mathrm{J}$, result is a MxK matrix
Transpose - flip around the diagonal (first row becomes first column, etc). Is symmetric if $\mathrm{A}=$ A^{T}
Identity matrix - binary matrix where the diagonal is all 1 's, all other values are 0 , is always square
Inverse - only computable for a 2×2 matrix (bigger can be done, but not in this class)

Propositions and logical operations

Truth tables for logical operators
Statement - true or false declaration (not opinion, question, command, changing value, etc.)

Graphs

Matix in-degree = number of arrows into node, number of 1's in the column
out-degree $=$ number of arrows out of node, number of 1 's in the row
Paths
Cycle - begin and end at the same vertex
Connectivity relation showing all paths of all lengths
R^{n} path of length n
Relations
reflexive $-R$ is reflexive if aRa for all a in A
irreflexive $-R$ is irreflexive if aRa for all a in A
symmetric -aRb and bRa
asymmetric -aRb and bRa ($a \square \mathrm{~b}$ or both 0 , diagonal is 0)
antisymmetric - if aRb and bRa then $\mathrm{a}=\mathrm{b}$, else aRb and bRa , or both 0
transitive - if aRb and bRc then aRc
Digraph representations of relations
Matrix representations of relations
Graphs
reflexive - all nodes need a cycle of length 1
irreflexive - no node can have a cycle of length 1
symmetric - all edges go both ways, cycles of length 1 are ok
asymmetric - no cycle of length 1 , all edges are single path
antisymmetric - all edges between vertices are single path, cycle of length 1 is ok
transitive - if there is a path of length 2 from a to c , passing through b , then there must also be a path of length 1 between a and c. If no path of length 2 exists, it is still transitive.

Growth of Function

Big-Theta and Big-Oh Notation

Trees

root - first or top vertex in the tree, has a height of 0
leaf - bottom vertex, has 0 children
n -tree - all vertices have at most n children
complete - all vertices except leaves have the same number of children
balanced - height of all leaves differ by at most 1
sub-tree - any vertex of a tree may be partitioned off (with all children etc) to become a new tree

Grammar

$\mathrm{G}=\left(\mathrm{V}, \mathrm{S}, \mathrm{v}_{0},->\right)$
machine
G - grammar
V - everything, similar to the universe
S - set of terminal symbols
N - set of non-terminal symbols
$->$ - the production

Machine

$\mathrm{M}=(\mathrm{S}, \mathrm{I}, \mathrm{F})$ machine or (S, I, F, so, T) Moore
S - state set
I - input set
F - state transition function
T - terminal state set
s_{0} - starting state

