
SOFTWARE DEVELOPMENT

Paradigms And Processes

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Chapter 1 consists of a brief introduction to the object-oriented programming paradigm, and a review of CS 1400 and the Java programming language. Together, the introduction and the review form a context for our study of the C++ programming language and how we implement object-oriented programs in C++. The first section briefly describes some of the techniques that have been developed over the last half-century to design software.

THE SOFTWARE LIFE CYCLE

• “A life cycle is a collection of phases that divide an effort
into several more manageable and controllable subordinate
efforts.”

• Sinan Si Albir, UML In A Nutshell

• “The choice of the software development process has a significant
influence on the project's success. The appropriate process can
lead to faster completion, reduced cost, improved quality, and lower
risk. The wrong process can lead to duplicated work efforts and
schedule slips, and create continual management problems.”

• Jaak Jurison, Software Project Management: The Manager’s View, p. 12

©2002, Delroy A. Brinkerhoff Introduction to the Object Model Slide 13 of 40

Presenter
Presentation Notes
"A life cycle is a collection of phases that divide an effort into several more manageable and controllable subordinate efforts." However, there is no universally agreed-upon lifecycle or set of phases that are included in a lifecycle; nor is there an agreed-upon order in which the phases appear within the lifecycle.Finally, there is no universal process establishing when the tasks of a phase are carried out or specifying when a phase is complete. Nevertheless, "The choice of the software development process has a significant influence on the project success. The appropriate process can lead to faster completion, reduced cost, improved quality, and lower risk. The wrong process can lead to duplicate work efforts and schedule slips, and create continual management problems."

SOFTWARE LIFECYCLE PHASES

• Requirements

• Analysis

• Design

• Implementation

• Validation

• Maintenance

• Retire

} Development

Presenter
Presentation Notes
Although lifecycle phases can and do very, the seven phases listed here are typical of many software development processes. In CS 1410, we focus on three phases: analysis, design, and implementation (or programming). Together, these phases represent the main software development tasks.

ANALYSIS

• Emphasis is placed on the problem, not the solution

• Creates an external model of the problem/application domain by abstracting
essential aspects or features

• Results should be understandable by customers, domain experts, and
implementers

• Language/system independent

• Verifies that the requirements are sufficiently complete to proceed

• Called OOA when applied to the object model

Presenter
Presentation Notes
During analysis the focus is on the problem rather than on the solution. The analyst attempts to extract from the real world (also known as the problem domain or the application domain) the essential aspects or features of the problem. For example, if the problem relates to a bank, the analyst may recognize tellers, customers, and various kinds of accounts. The results of a good analysis must be understood by all of the major stakeholders such as customers, domain experts, and implementers. At this point the analysis is independent of any programming language or hardware system. Any deficiencies in the requirements are corrected at this time. When we apply analysis to the object-oriented paradigm or model, it is typically abbreviated 00A.

DESIGN

• Creates a solution architecture or framework by transforming the analysis results
into a form that can be implemented

• Forms a bridge between analysis and implementation

• Adds data structures and other implementation features

• Describes user interface

• Describes data management

• Describes task management

• Maintain language/system independence

• Called OOD when applied to the object model

Presenter
Presentation Notes
The design forms a bridge between analysis and implementation by creating a static framework or architecture upon which we can implement the features discovered during analysis. In particular, it is often necessary to add data structures that did not exist in the problem domain but which are required for a software solution. The appearance and behavior of many of the main components are specified during this phase, but language and system independence is maintained. When applied to the object model or paradigm design is frequently abbreviated as OOD.

IMPLEMENTATION / PROGRAMMING

• Creates or forms a usable tool or system

• Forms the most significant part of a project’s deliverables

• Final result may be represented as

• Hardware

• Software

• Combination

• Called OOP (programming) when the implementation is in software based on
the object model

Presenter
Presentation Notes
During the implementation or programming phase the features created during design are finally implemented. The results of this phase form the most significant part of the project deliverables, that is the software and/or hardware that is ultimately delivered to the client. But other deliverables, such as documentation, are also produced during this phase. When applied to the object-oriented model this phase is often abbreviated 00P for object-oriented programming. Obviously, this is where we will spend the majority of our effort during CS 1410.

THE DEVELOPMENT GOAL

Procedural
Data Driven

Object-Oriented

Ad Hoc

Presenter
Presentation Notes
Over the last half-century several techniques have been proposed and utilized to help streamline the software development process. As suggested by the illustration on this slide, each of those techniques presented here can ultimately lead from a problem in the real world to a software solution. The difference is in how quickly and efficiently that goal is reached. The ad hoc path really represents an organic process that proceeded with little or no forethought and represents the way that much of the early software systems were created.

THE PROCEDURAL MODEL

Semantic Gap
(analysis & design)

Analysis
and
Design
Results

updateInventory()
{
}

printReport ()
{
}

Presenter
Presentation Notes
The procedural model begins with a large problem and successively decomposes it or breaks it down into increasingly smaller problems. Each of the successively smaller problems is represented by a procedure that calls one or more detailed procedures and is in turn called by a less detailed procedure. The advantage of the procedural model is that the results of the analysis and design are, in some sense, close to the final implementation, which means that creating the final program is relatively easy and straightforward. Unfortunately, the functional decomposition is far removed from the original, real-world problem, which means that the results of the analysis and design are not easily understood by problem domain experts who are not also programmers. Furthermore, the procedural model does not help the implementers to better understand the original problem.

THE DATA FLOW MODEL

Paradigm shift
(programming)

Analysis
and
Design
Results

updateInventory()
{
}

printReport ()
{
}

Presenter
Presentation Notes
There were several different kinds of data flow models proposed and used but each variation had two features in common. They represented data flowing through a system as a set of arrows and represented the data transformations or processing a bubbles. Data flow models followed the data as it entered the system, was transformed or operated upon as it moved through the system, and continued following it until it ultimately left the system. The data flow diagrams were tightly coupled to the original problem appearing in the real world, which made them very easy for domain experts to follow and to understand. The nearness of the data flow diagrams to the original problem also provided the implementers with a better understanding of the subtleties of the original problem. Unfortunately, the data flow diagrams bear little resemblance to the final solution, which made the final programming effort relatively difficult.

THE OBJECT-ORIENTED
MODEL

Analysis
and
Design
Results

O-O O-O

Alarm

volume
rate

on()
off()

Level Sensor

currentLevel : float
threshold : float

refresh()

Display

currentValue

update()

Sensor

address : integer
readRate : float

reset()
alarm()
read()

class Sensor { }

class LevelSensor : public Sensor { }

class Alarm { }

class Display { }

Presenter
Presentation Notes
The object-oriented model or paradigm has many features in common with both the procedural model and the data flow model. During analysis, the original problem is seen as a collection of classes, which are refined during design. Classes ultimately represent data and so accrue many of the advantages of the data flow model. Specifically, it is easier for non-programmers to understand the analysis and design in terms of classes (especially when the classes are named in such a way that they reflect features easily observed in the original problem) and they can provide the implementers with insights into the original problem. Furthermore, the classes form a common vocabulary that spans analysis, design, and implementation. This common vocabulary forms a bridge that easily spans the gaps from the problem to analysis and design, and from analysis and design to implementation.

JAVA VS. C++

• Java is a pure object-oriented language, all features (variables, constants, and
methods) are contained in a class

• C++ is a hybrid language – supports both the procedural and object-oriented
paradigms

• Features may be contained in a class

• Features may be independent of any class

• Some library components are object-oriented

Presenter
Presentation Notes
Finally, we need to understand the Java and the C++ programming languages in the context of these programming models or paradigms. Java is a pure object-oriented language, which means that all of the features must be contained in a class. (As a side bar, I am using the term "feature" as does James Rumbaugh to mean anything that can appear inside of a class, such as variables, constants, and methods or functions.) Alternatively, C++ is a hybrid language. That means that it provides support for both the procedural and the object oriented programming paradigms. We will begin our study of C++ by focusing on the procedural paradigm, but at the same time we must acknowledge that some features of C++ are inherently object-oriented. We must further rely on your experience with object orientation in CS 1400 to help us to understand these features until classes and objects are formally introduced later.

	Software Development
	The Software Life Cycle
	Software LifeCycle Phases
	Analysis
	Design
	Implementation / Programming
	The Development Goal
	the Procedural Model
	the Data Flow Model
	the Object-Oriented Model
	Java Vs. C++

