
PROGRAMMING

Languages and Programs

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Programming languages have been evolving for decades, which has resulted in an extensive genealogy. Both Java and C++ belong to a branch called imperative programming languages. Programs written in imperative languages consist of a sequence of statements where each statement is an instruction telling the computer to perform some simple, basic task.



C++ FAMILY TREE

C++ is derived from C

Java is derived from C++

C# is derived from Java

FORTRAN

ALGOL58 (IAL)

ALGOL60

CPL

BCPL

B

C

C++ Objective C

Java

C#

Presenter
Presentation Notes
C++ lies neither at the beginning nor at the end of this evolutionary process. What is important for us is to understand that C++ is a child of the earlier C programming language and is the parent of the Java programming language, which in turn is the parent of C#.



ANSI C AND C++

ANSI
C

C++

main
functions
syntax
operators
flow of control
organization
compilation
libraries

object-oriented
model

prototypes
const
inline
references
new / delete

classes
encapsulation
inheritance
polymorphism
RTTI
templates
ctors/dtors
overloading

Presenter
Presentation Notes
C++ extends the earlier C programming language in two main dimensions. First, it added many important programming features that are unrelated to object orientation. Many of these features were back ported to K&R C (or Kernighan and Richie C) to form the modern version known as ANSI C (the American National Standards Institute is responsible for maintaining the official definitions of many programming language). Secondly, C++ added full support for the object-oriented programming paradigm. With a couple of minor exceptions, a modern C++ compiler can compile any correct ANSI C program.



HIGH-LEVEL VS. LOW-LEVEL

High-level languages are close to the problem 
and system independent

Low-level languages are close to the system so 
their instructions reflect the system 

capabilities and not the problem solution

Presenter
Presentation Notes
Another way to understand C++ is based on programming levels. Machine code or machine language is the lowest level programming language. A program written in machine code consists of a sequence of bits-1's and 0's-forming primitive computer instructions. Assembler is one small step above machine code; it provides a human-readable mnemonic such as ADD and AND for each machine code instruction.
 
On the other hand, high-level languages provide instructions that make solving problems easier. That is to say, low-level languages are hardware-oriented – they are tightly tied to the underlying hardware - while high-level languages are problem-oriented.
 
C is typically described as a mid-level programming language. It supports the problem-oriented features of high-level languages while at the same time providing access to many of the primitive hardware operations. By adding support for object orientation, C++ is clearly a high-level language but at the same time it retains the ability to utilize many primitive hardware operations. The dual nature of C++ makes it ideally suited for many programming tasks such as implementing operating systems, complex applications, and sophisticated games.


	Programming
	C++ Family Tree
	ANSI C and C++
	High-Level vs. Low-Level

