
C++ VS. JAVA

A Review of Object-Oriented Programming

Delroy A. Brinkerhoff

Presenter
Presentation Notes
This section compares C++ with Java, the language that you studied last semester in CS 1400. But it is more than just a comparison of two programming languages, it's also a review of the object-oriented programming model. Although we begin our study of C++ from the procedural perspective, we will use some object-oriented features of the language and must rely on your previous object-oriented experience until we formally introduce object orientation at mid-semester.



JAVA

• Object-Oriented Only

• Class

• Object, instance

• Instance variable / field

• Method

• Hybrid: Object-Oriented and Procedural

• Class

• Object, instance

• Data member / member variable

• Member function

• Outside of a class: function, variable

C++

TERMINOLOGY: JAVA VS. C++

Presenter
Presentation Notes
C++ and Java are both object-oriented languages, however they sometimes use different terms to represent the same or similar features. Furthermore, the terms are sometimes different when just looking at the object-oriented model. A more complete comparison can be found in the textbook. Writing an object-oriented program in either language entails creating one or more classes. From each class we are able to instantiate or create one or more objects. The term "instance" is a synonym for "object." Data stored in a Java object is called either an instance variable or an instance field, while data stored in a C++ object is called either a data member or a member variable. The operations that a Java object may perform are called methods, while C++ uses the term member function. Additionally, C++ may also define variables and functions outside of a class and these are simply called, wait for it, variables and functions.



CLASSES AND OBJECTS

• Object-oriented programs define classes

• Classes are instantiated to make objects

• Think of a class as a cookie cutter and objects as the cookies

• Classes specify data and operations, objects provide storage or memory for data

• Classes and objects encapsulate data and the operations that use the data

• A constructor is a method/function that builds an object (initializes data object data)

• Both Java and C++ use the dot operator to access class features

• C++ also use the arrow operator to access class features

Presenter
Presentation Notes
Classes and objects are very closely related and the terms are sometimes used interchangeably, but the two are distinct and it's important to understand the differences between them. The idea of a cookie-cutter is a common analogy to help us understand the differences between a class and an object. When making cookies, we mix the ingredients and rollout the dough. We use the cookie-cutter to stamp out as many cookies as we wish. The cookie-cutter is inedible and therefore is not the final product, but it does determine the shape and the size of each cookie. Similarly, a class is not the ultimate element in an object-oriented program, but it does describe that element: an object. A class determines the number and type of each variable stored in an object, but it is the object that provides space to hold the actual data. So a class is like a cookie-cutter and an object is like a cookie. There are three features that characterize the object-oriented programming model. The first is encapsulation. Classes and objects encapsulate together the data and the operations/methods/functions that use or manipulate that data. One special operation, a constructor, builds or initializes objects when they are instantiated. Both Java and C++ use the dot operator to access features (i.e., data and methods or functions). C++ also uses another member selection operator, not available in Java, called the arrow operator.



EXAMPLES

• Foo myFoo1 = new Foo(5); // Java

• Foo* myFoo2 = new Foo(5); // C++

• Foo myFoo3(5); // C++

• myFoo1.doSomthing(); // Java

• myfoo2->doSomthing(); // C++

• myFoo3.doSomthing(); // C++, looks like Java

Presenter
Presentation Notes
It's easier to see the difference between Java and C++ by looking at some example code fragments. These examples assume that "Foo" is the name of a class that has a method or function named "doSomething." The name of the class, Foo, becomes the name of a data type when defining the variables Foo. Both Java and C++ instantiate a new instance of Foo using the "new" operator, but notice the asterisk in the C++ code. C++ is also able to make a new Foo object without using the keyword "new." That is to say, C++ can create objects in two different ways, and understanding the difference between the Java code and the two C++ statements is key to understanding why Java was created in the first place. Once an object is instantiated, both languages are able to use the dot operator to call a method or a function. But again, C++ has two different ways of completing this task that utilize two different operators: the arrow operator and the dot operator.



ARRAYS

double[] scores = new double[8];

double scores[8];

double* scores = new double[8];

0
1
2
3
4
5
6
7

scores

Presenter
Presentation Notes
Both languages support arrays that are fundamentally the same but do have some important differences. Arrays allow us to create and to use multiple variables with just one name. While Java provides one way of creating an array, C++ again provides two. Whenever an array is created we must specify the size or the number of elements stored in the array. The size is specified as an integer value appearing in square brackets in the definition. Whenever we access an element or a variable within an array (either to store or retrieve a value) we select the specific element or variable with an index or subscript. Arrays in both languages are "zero indexed" or "zero-based" meaning that legal index values always range from 0 to 1 less than the size of the array.



JAVA ARRAYS VS C++ ARRAYS

• An array in Java is an instance of an 
unnamed class

• It has a length attribute or instance field

• scores.length

• An array in C++ is a primitive type (it is 
NOT an object)

• scores.length

Presenter
Presentation Notes
Although arrays are fundamentally the same in both languages and are used logically in the same way to solve problems, there is one very important difference between the two languages. In Java, an array is an instance of an unnamed class; that is, an array is an object. As a Java array is an object, it can have attributes or instance fields. One very important instance field is "length." On the other hand, an array in C++ is a primitive type and does not have any member variables. Specifically, you cannot use ".length" with the name of an array in C++.


	C++ vs. Java
	Terminology: Java vs. C++
	Classes and Objects
	Examples
	arrays
	Java Arrays vs C++ Arrays

