
COMPILER OPERATION

Translating C++ Into Machine Code

Delroy A. Brinkerhoff

Presenter
Presentation Notes
This section provides a more detailed view of how the C++ compiler translates programs into machine code. Focus on the terminology and on the tasks that each part of the compiler perform. Knowing the correct terminology and the purpose of each component will help us better use and interact with compiler.



THE C++ COMPILER SYSTEM

Presenter
Presentation Notes
The compiler actually consists of several component programs, and understanding the purpose of each of these programs will help us understand how C++ programs are constructed and will help us understand the diagnostics or feedback information that we see during the compilation process. The first important program is called the preprocessor. The preprocessor reads our source code file and searches for a very few specific lines of code called directives. It processes the directives and passes the results along with unmodified C++ code to the compiler. When we talk about "the compiler," we are generally refering to all three programs together, which is really a compiler system. But sometimes "the compiler" just refers to the middle component. If we can't tell from context which compiler we're talking about, then we must explicitly clarify our meaning. The compiler component translates the C++ source code into a mixture of machine code and descriptive information. Together, the machine code and the information are called object code. (The word "object" used in naming object code has nothing to do with the word "object" relating to object-oriented programming.) The next program in the sequence, the linker, uses the descriptive information to build the final executable program. The linker (also called a loader on UNIX or Linux systems) links together object code files along with library code to form the executable program.



THE PREPROCESSOR

• The preprocessor processes directives that begin with #

• #include

• #include <header_file>

• #include "header_file"

• #define NAME_SIZE 25

• Symbolic constant, named constant, manifest constant

Presenter
Presentation Notes
The preprocessor searches for statements that begin with the "#" character. These statements, called directives, represent simple operations carried out by the preprocessor. Notice that preprocessor directives do not end with a semicolon. The #include directive instructs the preprocessor to open a file, called a header file, and copy the contents into the program. The symbols surrounding the name of the header file control where the preprocessor searches for the file. The angle brackets name a system header file, which is stored in a fixed location determined by the compiler and the operating system. Double quotation marks instruct the preprocessor to search in the current directory for a header file that is part of a C++ program. The #define directive creates a macro, which is just an alias for a constant value. In the illustrated example, the macro "NAME_SIZE" represents the constant "25." When the preprocessor "expands" a macro, it simply performs a character substitution; that is, it replaces the characters of the macro name with the characters forming the constant. There are other ways of naming a constant, which we will explore in later chapters. However created, these constants are called symbolic constants, named contents, or manifest constants.



for (int c = 0; c < 25; c++)
{

. . .
}

for (int s = 0; s < 25; s++)
{

. . .
}

if (x >= 25)
. . .

VALUE OF SYMBOLIC CONSTANTS

#define NAME_SIZE 25
#define N_STUDENTS 25

for (int c = 0; c < NAME_SIZE; c++)
{

. . .
}

for (int s = 0; s < N_STUDENTS; s++)
{

. . .
}

if (x >= NAME_SIZE)
. . .

Presenter
Presentation Notes
Symbolic constants help improve code in at least two different ways. First, they help the code to be more self-documenting. Within the context of a program, NAME_SIZE is more meaningful than is a bare 25. Second, it's possible for a program to use the same constant value to represent independent values. For example, 25 might represent the size of a name, while at the same time representing the number of students in a class. Now, let’s suppose that we want to increase the length of a name to 30 characters while leaving the number of students unchanged. A global find-and-replace would erroneously change all occurrences of 25 to 30, but a symbolic constant requires only one change to the macro definition. Once the macro is changed, the preprocessor takes care of the rest of the work.



HOW THE PREPROCESSOR WORKS

Presenter
Presentation Notes
This more detailed view of how the preprocessor works illustrates the typical behavior of the #include and #define directives. A C++ source code program, represented by the purple rectangle, includes both a system header file (named in angle brackets) and a program-specific header file (named in double quotation marks). The preprocessor copies the contents of both header files and the C++ source code file to a temporary file. While copying the files, it expands any #define macros in the files: it replaces NAME_SIZE with 25. The compiler component actually processes the temporary file and then removes it.



THE COMPILER COMPONENT

Presenter
Presentation Notes
The final illustration shows how a large, real-world C+ program is organized. Specifically, large programs are typically spread over many source code files; each source code file ends with a ".cpp" extension. Each source code file is separately processed and compiled by the preprocessor and the compiler component. The linker assembles all of the object files together along with library code and a runtime file to create the final executable. (The names of object code files end with a ".obj" extension on Windows systems and with a ".o" extension on Unix, Linux, and OS X systems.) Fortunately, most of this work is transparent to programmers. Using Visual Studio, we press one button and Studio does the rest of the work for us.


	Compiler Operation
	The C++ Compiler System
	The Preprocessor
	Value of Symbolic Constants
	How The Preprocessor Works
	The Compiler Component

