
PROGRAM DATA

Everything you always wanted to know about variables

Delroy A. Brinkerhoff

Presenter
Presentation Notes
This section introduces the basics of program data. The basics include datatypes, constants, variables, and the rules for forming legal identifiers (i.e., names), but the emphasis is on variables.

DATA TYPES

Type Size Range Comments

void 0 N/A function return

bool 1 false / true

char 1 -128 to 127, or 0 to 255 2-byte available

short 2 -32,768 to 32,767 short int

int 4 (typical) -2,147,483,648 to 2,147,483,647 system dependent

long 4 -2,147,483,648 to 2,147,483,647 long int

float 4 ±3.4028234 × 10±38 6 – 7 sig digs

double 8 ±1.79769313486231570 × 10±308 ~15 sig dig

Presenter
Presentation Notes
The C++ compiler intrinsically knows about seven basic or built-in datatypes or eight if you want to include void. It isn't important to remember the exact size nor the exact range of each datatype. What is important is the general categories of each type. Void is essentially the typless type. That is, it is used when a more precise datatype is either unknown or inappropriate. We will explore this much later in the semester. Like Java, C++ includes a Boolean datatype, but unlike Java it shortens the name to just bool. The C++ bool datatype is also different from the Java boolean datatype in that it is just a syntactic candy coating for an integer rather than a true Boolean. This will also be explored in more detail later. Remember that char, short, int, and long are all integers, that is, they hold only whole numbers but no fractional values. Also remember that float and double are floating point data types that can hold fractional values.

CONSTANTS

Constant Comments

10 Values without a decimal point are type int

10L L makes it a long

10U U makes it unsigned

10.0 Values with a decimal point are type double

10F or 10.0F The F makes it a float

0xAB Leading 0x or 0X indicates hexadecimal (unsigned int)

067 Leading 0 indicates octal (unsigned int)

‘a’ Character constant

“hello” String constant or string literal

1.23e20 or 1.23e-20 Scientific notation; 1.23×1020 and 1.23×10-20

Presenter
Presentation Notes
Although there is a lot of detail in this table only about half of it is important enough for us to commit to memory at this point in time. Numbers that do not include a decimal point are automatically treated as type int by the compiler. Numbers that do include a decimal point are automatically treated as type double by the compiler. The compiler treats numbers that begin with 0x as unsigned hexadecimal values and numbers that begin with 0 as unsigned octal values. Single letters enclosed in single quotation marks are treated as character constants, and one or more characters enclosed in double quotation marks are treated as strings. Note that a single character enclosed in single quotation marks looks very similar to the same character enclosed in double quotation marks but the internal representations of the two are quite different.

VARIABLES

• Variables are a named region of main memory. Variables have

• A name

• A value

• An Address

• The compiler maps the name to the address

Presenter
Presentation Notes
Variables are a way for a programmer to name a small region of memory, that is, the location in memory where the value of the variable is stored. It is often very useful to recall that a variable has three characteristics or parts: a name, a value, and an address. Programmers refer to that location in memory with the variable name, but when the compiler converts a program into machine code, it replaces all references to the variable name by the variable's address or location in memory. While the variable’s location in memory does not change, the value stored at that location can change or vary over time.

HOUSES AS A METAPHOR FOR VARIABLES

Presenter
Presentation Notes
Houses along the streets serve as a metaphor for variables. While one family may move out of a house and a new family move in, the location of the house, and hence its address, remains fixed. Just like house numbers generally do not increase by just one, the addresses of variables increase by the size of the variable. In this example each address is four greater than the previous address, which is appropriate for a sequence of integers in memory. This metaphor illustrates that variables occupy more than a single byte of memory but that memory is byte addressable.

auto

• Default – keyword rarely used

• Memory is automatically allocated and
deallocated as the variable comes into
and goes out of scope

• Initialized each time memory is allocated

• auto int maximum;

• auto int maximum = 100;

• Memory is allocated once at load time

• Memory remains allocated until
termination; value is not lost with scope
change

• Initialized only once at load time

• static int maximum;

• static int maximum = 100;

static

VARIABLE MODIFIERS

Presenter
Presentation Notes
Two keywords describe the general behavior of variables. The "auto" keyword specifies an automatic variable. Memory to hold an automatic variable is automatically allocated when the variable comes into scope and is automatically de-allocated when the variable leaves scope. Scope is just the location in a program where a variable is visible and accessible. Unless otherwise specified, all variables are automatic, which means that the "auto" keyword is unnecessary (i.e., it is assumed) - the only time that the "auto" keyword is ever used is when demonstrating that it can be used. Any value stored in the variable is lost when the variable goes out of scope and its memory is deallocated. If automatic variables include an initialization, that initialization takes place every time the variable comes into scope. The opposite of an automatic variable is a static variable, which is denoted with the "static" keyword. The memory for a static variable is allocated when the program is first loaded into memory and remains allocated until the program terminates. Although static variables still follow all scoping rules, the values stored in the variables is not discarded when the variables go out of scope and is again available when the variables come back into scope. If a static variable definition includes an initialization, that initialization takes place once when the program is first loaded into memory.

SCOPE VS. MEMORY ALLOCATION

• Memory allocation

• Programs have a store of unused or unassigned memory

• Programs can allocate, assign, allot, or distribute that memory to hold variables

• Scope

• Programmers can name programming elements like variables, functions, and classes

• Scope is where the name is visible and the programming element is accessible

Presenter
Presentation Notes
Automatic variables make memory allocation and scope look like they are the same thing: memory is allocated and deallocated for an automatic variable as it comes into and goes out of scope. Nevertheless, scope and memory allocation are independent concepts. As the program runs, it has a store of unused memory that it may assign to variables as needed. When a new automatic variable is needed, it is assigned memory from this free store, and when the automatic variable is no longer needed, the memory is deallocated and returned to the free store. When writing a program, programmers can name various programming elements like variables, functions, and classes. Scope is the location in a program where a name is visible and the programming element that it represents is accessible. Static variables demonstrate the distinction between scope and memory allocation. The memory needed to store a static variable is allocated when the program is first loaded into memory to run and it remains allocated to that variable until the program terminates. Specifically, the memory remains allocated independently of whether the variable is in scope or not.

LEGAL IDENTIFIERS

• May be any length

• Are case sensitive (Counter is not the same as counter)

• Must begin with a letter or an underscore (_)

• Subsequent characters may be letters, digits, and underscores (but no other characters)

• Cannot be a keyword

• May only be defined once in a scope

• Should avoid library function names

• Must be declared before use

• Must be defined exactly once

Presenter
Presentation Notes
There are several rules that we must follow when creating legal identifiers or names. With the exception of how Java treats the $, the C++ rules are identical to those that you learned in Java. The two most important rules are: identifiers are case sensitive (that means that a capital letter is not the same as a lowercase letter), and all variable names must begin with a letter or underscore and then continue with any combination of letters, numbers, or underscores. (In most cases, identifiers that begin with an underscore are reserved for special situations.)

	Program Data
	Data Types
	Constants
	Variables
	Houses as a Metaphor for variables
	Variable Modifiers
	Scope vs. Memory Allocation
	Legal Identifiers

