
C++ CONSOLE INPUT / OUTPUT

Reading input from the keyboard and

displaying output to the screen

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Before the advent of graphical user interfaces or GUIs, users interacted with computers in a variety of ways. First, through patch cords and plug boards, followed by paper tape and punch cards, then through teletype terminals, which were replaces by cathode ray tubes or CRTs and keyboards. Beginning with the teletype terminals, this interface was called “the console.”



THE COMPUTER CONSOLE

• The screen

• The keyboard

Presenter
Presentation Notes
The console consisted of the screen and the keyboard, and all human/computer interaction was text-based. Today, we still use the console, but it is typically represented by a specific window, either the “Command Prompt” window or a shell. Our study focuses on the console for simplicity.



CONSOLE I/O 
OBJECTS

• cin >> var;

• cout << expression;

• cerr << expression;

• << is the inserter operator

• >> is the extractor operator

• cin, cout, and cerr are pre-instantiated objects extracted from a C++ 
library

Presenter
Presentation Notes
When a C++ program begins to run, it has three stream objects available through which it can perform I/O operations. Actually, it has more than three but that’s all we’ll consider this semester. These objects are instances of two classes named “istream” and “ostream” (for input and output stream respectively). As data is moved in or out of our program, it is treated as a stream or sequence of bytes, hence the term “stream.” The objects are part of a library that the linker automatically merges with our program.
The object named “cin” (for console input) is tied to the keyboard, while cout (for console output) and cerr (for console error) are tied to the screen. It might seem strange to have two streams going to the same destination, but there are console “tricks” that we can use to split the streams if we choose.
The console objects are used in conjunction with two I/O operators, neither of which have a parallel in Java. The first is called the “inserter” operator and is formed by two less than symbols next to each other. The inserter performs an output operation: it inserts data into the output stream. The second operator, called the extractor, is formed by two greater than signs next to each other and performs an input operation: it extracts data from the input stream.



USING THE CONSOLE I/O SYSTEM

#include <iostream>
.
.
.

std::cout << "hello world" << std::endl;

#include <iostream>
using namespace std;

.

.

.
cout << "hello world" << endl;

Presenter
Presentation Notes
There are a couple of ways that we can access the console stream objects. On the left is the most simple and the most compact; this is the way that the examples are presented in the textbook. However, on the Internet, you will occasionally see the syntax illustrated on the right, so you should understand both ways.
The difference between the two examples is analogous to the difference between two Java programs that use or do not use an “import” statement. In Java, an import statement allows a programmer to use a shorthand notation when accessing library or API objects. The equivalent in C++ is a “using” statement. Without the “using” statement, some programming features (e.g., cout) must be specified more fully. The syntax “std::” ties cout to the “std” or standard namespace. The two colons form the scope resolution operator, which we will explore in more detail later in the semester.



MANIPULATORS

• Manipulators are special functions 
designed to work with the inserter 
(<<) and the extractor (>>) 
operators

• Manipulators without arguments are 
described in <iostream>

• endl (the last character is a lower 
case L) ends the line by dropping 
down one line and returning the 
cursor to the left side of the screen

#include <iostream>
using namespace std;

int main()
{

cout << "See the quick red ";
cout << "fox jump over the “ << endl;
cout << endl << "lazy brown dog." << endl;

cout << endl;

return 0;
}

Presenter
Presentation Notes
Manipulators are special functions that are designed to work with the inserter or the extractor. The most common manipulator is “endl” (where the last character is a lower-case L). The endl manipulator performs an end-line: it moves the cursor down one line and to the left edge of the console. As demonstrated here, the endl manipulator can be inserted wherever and as often as we wish to help achieve the output formatting that we want.



ESCAPE SEQUENCES / CHARACTERS

Sequence Character

\n Newline

\a Alert (or bell)

\b Backspace

\f Form feed

\r Carriage return

\t Horizontal tab

\\ Backslash

\’ Single quotation mark

\” Double quotation mark

\xdd Char with hex value dd

Presenter
Presentation Notes
In our programs, we sometimes need to refer to characters that either do not have a visible or graphic form or are hard to “talk about” for some other reason. For example, suppose I need to print a backspace character. There’s a backspace key on the keyboard but what would it “look like” if I wanted to write it in a program? To solve this problem, many languages, including C++ and Java, provide a series of escape sequences or escape characters.
These characters are formed by “escaping” a “normal” character. So, for example, the backspace character is formed by two characters right next to each other: the backslash and the “B.” The backslash character is called an “escape character.” Printing the newline character – backslash “N” – does just about the same thing as printing an endl (the only difference is that endl flushes a memory buffer while a newline does not).
About half of the escape characters are used often enough to justify remembering them: Newline, Tab, Backslash, and the single and double quotation marks.


	C++ Console Input / Output
	The Computer Console
	Console I/O Objects
	Using The Console I/O System
	Manipulators
	Escape Sequences / Characters

