INHERITANCE

Also known as “Generalization”

Delroy A. Brinkerhoff


Presenter Notes
Presentation Notes
Inheritance or generalization is the most fundamental class relationship. Beginning with this section, we explore inheritance and how to implement and use it in C++ programs.



CLASS ROLES

Parent
Superclass
Base class
Ancestor

Child
Subclass
Derived class
Descendant

Each related class plays a distinct role
Parent/Child
Superclass/Subclass
Base class/derived class

Ancestor/Descendant

UML symbol is a line with a hollow,
three-sided arrowhead at one end and
undecorated at the other end


Presenter Notes
Presentation Notes
The UML represents inheritance as two connected class symbols. Each class plays a distinct role, and several role names are frequently used. The UML and the object-oriented paradigm use the names "superclass" and "subclass." C++ programmers call them "base class" and "derived class." Other names are based on biological relationships: "parent" and "child," or "ancestor" and "descendant."
The connecting line is decorated with a hollow, three-sided arrowhead at one end and undecorated at the other. The arrowhead is attached to the superclass, and the undecorated end is attached to the subclass. It is customary to draw the superclass above all subclasses, but sometimes that's impossible. So, it's crucial to follow the arrow's direction because the direction of the relationship can't change regardless of the relative orientation of the two classes.



UML INHERITANCE SYMBOL

Two styles used

Individual arrows for a few
subclasses

Shared arrows for many subclasses
Generalization
car is general

sedan and convertible are more
specific

car

\

car

sedan

convertible

convertible



Presenter Notes
Presentation Notes
It's possible to draw individual arrows between the superclass and its subclasses when there are only a few subclasses. But the diagram may become cluttered with arrows when there are many subclasses. One way to reduce the clutter is to draw one arrowhead whose tail splits to connect all the subclasses.
Software developers also call inheritance "generalization" because the superclass is general while the subclasses are more specific. For example, a car is general, while a sedan and a convertible are more specific kinds of cars. Inheritance hierarchies are also called gen-spec diagrams.



INHERITANCE
SEMANTICS / MEANING

An is a relationship
A sedan is a car
A convertible is a car

Each subclass inherits all features (members) defined in the superclass
Inheritance is a kind of code reuse — subclasses do not need to redefine features
If a car has a color variable, then both sedan and convertible inherit the color

If a car has a start function, both sedan and convertible inherit the function



Presenter Notes
Presentation Notes
Each relationship has a meaning called its semantics. Whenever we model a real-world situation with objects, we must match the relationships found in the real world with the best class relationship. Inheritance is an "is-a" relationship, so a sedan is a car, and a convertible is a car.
Subclasses inherit all the variables and functions, collectively called features or members, that a superclass has. As such, inheritance is a way of reusing and avoiding duplicating code. Imagine a car has a variable denoting its color and a function starting the car. Both a sedan and a convertible inherit the variable and the function.



IMPLEMENTING INHERITANCE

OBJECTS SIMILARITIES & DIFFERENCES

car

color
start()
shut_off()

convertible
lower_top()
raise_top()



Presenter Notes
Presentation Notes
Programming languages often implement inheritance by instantiating objects for a class and all its superclasses. For example, if a program instantiates an object from sedan, it simultaneously instantiates an object from car. Furthermore, the superclass object, car in this example, is nested or embedded inside the sedan object and forms the first part of the sedan object.
Inheritance describes how two classes are similar and how they are different. A Venn diagram is an easy way to illustrate the similarities and differences. A sedan has everything – variables and functions – a car has. In that sense, they are the same. But a sedan has some functions (it could also have additional variables) that a car doesn't. In that sense, they are different.



Shape

Circle

Rectangle

SUBSTITUTABILITY

Triangle

void render(Shape*s) { ...}

Circle ¢;
render(&c);



Presenter Notes
Presentation Notes
Inheritance also supports substitutability. That is, anywhere an instance of a superclass can appear, a programmer may replace it with an instance of one of its subclasses. So, the render function has a Shape parameter, but we can pass an instance of a Circle, a Rectangle, or a Triangle to it, thus substituting a subclass object for a Shape. We'll explore the significance of passing the object by pointer later.



DIRECTIONALITY

Parent

Child

Unidirectional

Parent Parent

—>
Messages
—>

Child Child

“Knows About”

Parent

Child

Navigate



Presenter Notes
Presentation Notes
Inheritance is unidirectional, which means that it operates in only one direction – specifically from the child or subclass to the parent or superclass. There are several ways of looking at directionality.
For example, a child may send a message to a parent, and while the parent may respond to a child's message, the parent cannot initiate message passing.
It's also possible to say that a child "knows" about a parent, which means that the child class may include code that accesses or uses features in the parent class, but none of the code in the parent class can access or use the child class. 
Finally, if a program can access the child object, it can navigate to or reach the parent object. However, a program cannot move from or reach the child from the parent.



BINDING STRENGTH
LIFETIME AND SHARING

* Parent is strongly/tightly bound to
child

* Parent and child are created and
destroyed simultaneously (they live
and die at the same time)

* The child does not share its parent
object with any other object


Presenter Notes
Presentation Notes
Inheritance binds the superclass object tightly, with great strength, to the subclass object. This results from implementing inheritance by embedding the superclass object inside the subclass object. Consequently, the objects bound by inheritance have simultaneous lifetimes – they are created and destroyed simultaneously – and the child cannot share its superclass object with other program objects.
Here it is imperative to distinguish between classes and objects. Previous inheritance diagrams illustrate sedan and convertible sharing the car superclass. But when the program instantiates a subclass (convertible or sedan), the resulting subclass and superclass objects form an exclusive relationship – the former doesn't share the latter.



	Inheritance
	Class Roles
	UML Inheritance Symbol
	Inheritance�Semantics / Meaning
	Implementing Inheritance
	Substitutability
	Directionality
	Binding Strength�Lifetime and sharing

