USING INHERITANCE

Accessing inherited features

Delroy A. Brinkerhoff


Presenter Notes
Presentation Notes
Previous sections presented many inheritance details, including what it means and how a program builds objects from inheritance-related classes. This section focuses on how we can use inheritance, specifically how we access the inherited features or members.



INHERITANCE EXAMPLE

A Circle is a Shape
inherits color, and an (x, y) location
has a radius that a Shape and a Rectangle don’t
A Rectangle is a Shape
inherits color, and an (x, y) location
has a width and height that a Shape and Circle don’t
Circle and Rectangle can’t directly access color or x and y

radius, width, and height don’t apply to all subclasses

Shape

-color: int
-X :int
-y :int

%

Circle

-radius : int

Rectangle

-width : int
-height : int



Presenter Notes
Presentation Notes
We use two examples to help understand inheritance. The first is the familiar Shape class hierarchy: Shape is the general superclass, and Circle and Rectangle are the more specialized subclasses. Following the best practice of object-oriented design, we “push” features as high up in the hierarchy as they generally apply to all classes. Every Shape has a color and, if we assume that we are drawing the shapes on a computer screen, an x and y location. So, it’s appropriate to define these features as Shape member variables. Although Circle and Rectangle inherit all three member variables, they are “private” in the Shape class, so Circle and Rectangle can’t access them directly.
A Circle has a radius, but a Rectangle does not. Similarly, a Rectangle has a width and a height, but a Circle does not. So, it is inappropriate to “push” these variables up to the Shape class.



ALTERNATE INHERITANCE STYLES

Shape

-color: int
-x :int

-y rint

|

Circle

Rectangle

Shape

-x :int

-color: int

-y :int

5

-radius : int

-width : int
) -height: iﬂt

Circle

-radius : int

Rectangle

-width : int
) -height :Lnt



Presenter Notes
Presentation Notes
Please note that we can draw the inheritance symbol in several ways, depending on the number of subclasses and the drawing tool if we use one.



private
protected
public

PROTECTED

“protected” keyword is only
meaningful with inheritance

Subclass can directly access
protected superclass
features

protected is an intermediate
level of accessibility

less restrictive than “private”

more restrictive than
“public”



Presenter Notes
Presentation Notes
Three keywords control the access to class members. As described in the previous chapter, “public” permits access by any object in the class, while “private” restricts access to the defining class’s scope. We delayed exploring the meaning of “protected” until now because it only has meaning in the context of inheritance-related classes.
Protected features exhibit an intermediate level of access. They are accessible to subclass objects as if they were public. However, they are inaccessible to unrelated objects as if they were private.
We can use the protected keyword to solve the Shape hierarchy problem by making color, and x and y protected members of the Shape class. Doing this allows Circle and Rectangle objects to access the variables while preventing other objects from doing so. However, we will continue making the member variables private in the superclass for two reasons. First, it forces us to learn the syntax and techniques for accessing inherited private features. Second, it prepares us for situations where we are not at liberty to change the superclass – perhaps because we don’t “own” it.



OVERLOADED FUNCTIONS

Shape

Have the same name

Must have unique argument lists

May have different return types

Are defined in the same scope
Member and non-member functions

Functions defined in a class or namespace have the same scope

Functions defined in different classes have different scope

lllustrated in red

+draw() : void
+set_color(c :int) : void

/\

Circle

+draw() : void
+move(x :int, y : int) : void
+move(x :int) : void



Presenter Notes
Presentation Notes
To better help us communicate, we take a few moments to define two similar and easily confused terms. The first is “overloading” functions. The most prominent feature of overloaded functions is that they have the same name. But there must be some way of distinguishing the functions so the compiler can bind a specific function call to the correct function definition. The compiler differentiates between overloaded functions based on their parameter lists. Each overloaded function’s parameter list must be unique. Any pair of overloaded functions will have a different number of parameters, or at least one set of corresponding parameters will be different data types. The return types may differ, but the functions must still have unique arguments.
Functions must be defined in the same scope to be overloaded. That requirement means that “regular” or non-member functions can be overloaded. It also means that member functions within a single class, as illustrated in red, can be overloaded, but functions in different classes cannot. And although we haven’t focused much attention on them, namespaces also create a scope; so, functions declared in the same namespace share a scope and can be overloaded.



OVERRIDDEN FUNCTIONS

Shape

Have the same name

Are defined in two or more classes related by inheritance
Does not apply to non-member functions

Must have identical argument lists and return type

Subclass functions must have equal or greater accessibility

superclass: protected; subclass: protected or public

superclass: public; subclass: public

lllustrated in blue

+draw() : void
+set_color(c :int) : void

/\

Circle

+draw() : void
+move(x :int, y : int) : void
+move(x :int) : void



Presenter Notes
Presentation Notes
The second term is “overriding” functions. Like overloaded functions, overridden functions have the same name but are otherwise quite different. Overriding functions can only occur in the context of inheritance, so the first requirement is two or more classes related by inheritance, as illustrated in blue. This requirement means that non-member functions, which are not part of a class, cannot be overridden.
Overridden functions must have identical argument lists and the same return type. The overriding functions, those written in the subclass, must have equal or greater accessibility. That means that if the superclass function is protected, then the subclass function could be protected or public, and if the superclass function is public, then the subclass function must also be public.



SalariedEmployee

-salary : double

+calc_pay() : double

ACCESSING INHERITED PRIVATE DATA:
USING A PUBLIC INTERFACE

SalesEmployee

-total_sales : double
-commission : double

+calc_pay() : double

SalariedEmployee
{
private:
double salary;

public:
double calc pay ()
{
return salary / 24;
}
} i



Presenter Notes
Presentation Notes
We can access a class’s private member variables through the class’s public interface, typically formed by public member functions. So, for our second example, consider two kinds of employees: a SalariedEmpolyee and a SalesEmployee. The first employee earns a salary, and the second earns both a salary and a commission – a percentage of the sales they make during each pay period. We calculate each employee’s salary-based pay by dividing their annual salary by 24, assuming bimonthly payment. The calc_pay function is part of the SalariedEmployee’s public interface and allows us to use the private salary variable. But the SalesEmployee class presents us with another problem.



CHAINING OVERRIDDEN FUNCTIONS

SalesEmployee : public SalariedEmployee
{
private:
double total sales;
double commission;

private:
double calc pay ()
{
return SalariedEmployee::calc pay() + total sales * commission;
J
b7


Presenter Notes
Presentation Notes
A SalesEmployee is a SalariedEmployee by inheritance, and so earns a salary. But a SalesEmployee also earns a commission. If not for this second requirement, the SalesEmployee class could inherit the calc_pay function from the SalariedEmployee class without further consideration. But the SalesEmployee calc_pay function must calculate both the salary- and commission-based pay, which requires programmers to override the SalariedEmployee’s calc_pay function.
Calculating the SalesEmployee’s commission is straightforward as it only uses SalesEmployee member variables. Calculating the salary part uses SalariedEmployee member variables, which are private and not directly accessible. 
We solve the problem by using the superclass’s public interface. The SalesEmplyee calc_pay function calls the SalariedEmployee calc_pay function, chaining the function calls. As the functions have the same name and argument list, we must use the superclass's name and the scope resolution operator to distinguish between them and avoid an incorrect recursive function call.



CONSTRUCTING OBJECTS

color;
NOXFFOO
Shape (int c¢) : color(c) {}
OxFFOO0 .
radius;
Is
Circle(int ¢, int r) : Shape(c), radius(r) {}

Circle c (OxFFOO, 5);



Presenter Notes
Presentation Notes
We return to the more-simple Shape example to demonstrate chaining two kinds of member functions. Constructors are a special kind of function. We define them from the superclass, represented by Shape, before the subclass, represented by Circle. Beginning with the instantiation of a Circle object, the constructors run in the opposite direction from their definition - the Circle constructor calls the Shape constructor. Notice that the call is the first element in the initializer list and passes one parameter, c, to the Shape constructor. The Shape constructor uses the parameter, c, to initialize the member variable color.



CALLING AN OVERRIDDEN FUNCTION

c.draw () ;

Calls the Circle draw function
c.Shape: :draw() ;

Calls the Shape draw function

When a subclass object calls an
overridden function, it calls the subclass
function unless the superclass function is
specifically selected

volid draw ()

{

Shape: :draw () ;

o
LA 4

An overriding function in a subclass may
call the superclass that it overrides, and
the scope resolution operator is
necessary


Presenter Notes
Presentation Notes
If c is the Circle object created in the previous example, we can call a Circle member function using the now-familiar syntax introduced in the last chapter. Recall that Circle overrides the Shape draw function. Although uncommon, we can call the Shape draw function, skipping the Circle version, using the scope resolution operator.
It’s more common for us to chain overridden functions. The draw function of any Shape subclass can call the Shape draw function with the scope resolution operator. The call to the superclass function can appear anywhere in the subclass function but is typically at the beginning or the end.



CALLING AN INHERITED FUNCTION

c.set color (0xXFF) ;
Circle does not override set_color
Calls the Shape set_color function

When a subclass object calls an inherited function, it calls the superclass
function, and the call is indistinguishable from a call made to a subclass member

function



Presenter Notes
Presentation Notes
Finally, the syntax for calling a non-overridden inherited function is straightforward and indistinguishable from a subclass function. If we only see the function call, we can’t tell which class defines it, the subclass or the superclass.



	Using Inheritance
	Inheritance example
	Alternate Inheritance Styles
	Protected
	Overloaded functions
	Overridden functions
	Accessing inherited private data:�using a public interface
	Chaining overridden functions
	Constructing objects
	Calling an overridden function
	Calling an inherited function

