
BUILDING AGGREGATION:
WHOLE-PART WITH POINTERS

The whole can create its parts,

or the program can create the parts

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Like composition, aggregation is a whole-part relationship. But it replaces composition’s strong binding with weak binding. This replacement affects how C++ implements aggregation and where the program can build it. The whole can create its parts with a constructor, or the program can create them with setter functions.

EngineCar

AGGREGATION
Engine

- size : double
- cylinders : int

Car
- model : string

• C++ implements aggregation with pointer member
variables

• Variables are not shown as class attributes in UML
diagrams

• Programmers translate the aggregation connector into a
variable

• Variables are defined in class scope in the whole class

• A pointer in the whole object points to an instance
of the part object

Presenter Notes
Presentation Notes
The two whole-part relationships have many common characteristics, beginning with the UML connector symbols. The symbol for both relationships is a diamond attached to the whole class, but aggregation’s diamond is outlined where composition’s is solid or filled-in. And C++ implements both relationships with class-scope variables. But it’s the difference in their binding strengths that differentiates the two relationships.C++ implements aggregation’s weak binding with a pointer variable. An abstract representation of the whole and part objects in memory illustrates that they are separate, distinct, and don’t overlap. This organization allows the two objects to have independent lifetimes and allows the whole to share its parts with other program objects.

PERSON
CLASS

Person
- name : string* = nullptr
- weight : int = 0
- height : double = 0
+ Person()
+ Person(n : string, w : int, h : double)
+ Person(w : int, h : height)
+ setName(n : string*) : void

Presenter Notes
Presentation Notes
We add two new class features to help manage aggregation. First, the program must initialize the pointer variable. As illustrated here, it can initialize it to nullptr in the class specification. Alternatively, the program can initialize the pointer in the constructor to nullptr or the address of an existing part object.Suppose the program initializes a pointer variable to nullptr or needs to update an existing aggregation connection. In that case, it must have the means to save a new address in the pointer. It’s common for the whole class in an aggregation to include a setter function to perform this task.

PERSON CLASS MEMBER FUNCTIONS

void setName(string* n)
{

if (name != nullptr)
delete name;

name = n;
}

public:
Person() : name(nullptr),

weight(0), height(0) {}

Person() {}

Person(string n, int w, double h)
: name(new string(n)),
weight(w), height(h) {}

Person(int w, double h)
: name(nullptr),
weight(w), height(h) {}

Presenter Notes
Presentation Notes
The UML class diagram doesn’t show the functions’ detail, so we turn to C++ code to continue.The first two functions are default constructors, but the class may only have one of these. The first constructor is the old-school version used before C++ allowed initializing member variables in the class specification. The second default constructor is newer and only necessary if the class has one or more non-default constructors but still needs a default. Choose the appropriate function.The third constructor builds a fully-populated Person object. Using the new operator in an initializer list is legal and allows us to create a part-object and form an aggregation relationship when creating the whole object.The last constructor demonstrates that we can create the whole object without creating the part or building the aggregation relationship. We can forgo setting the pointer variable if the class specification Initializes it.The setter function allows the program to build a new aggregation relationship between “this” (the whole) and the parameter (the part) objects whenever needed. The test for nullptr is old-school from the days when deleting a null caused memory errors. While the test is optional, the delete operation is necessary to prevent a memory leak.

class Car
{

private:
Engine* motor;
string model;

public:
Car(string m, double s, int c)

: motor(new Engine(s, c)), model(m) {}

Car(string m, Engine* e)
: motor(e), model(m) {}

};

CONSTRUCTOR INITIALIZATION

class Engine
{

private:
double size;
int cylinders;

public:
Engine(double s, int c)

: size(s), cylinders(c) {}
};

Presenter Notes
Presentation Notes
Building an aggregation relationship between a Car (the whole) and an Engine (the part) provides a clear picture of the data movement between the objects. The first Car constructor builds the part from the Engine’s size and number of cylinders with the new operator. The second constructor installs an existing Engine object.

Engine

Engine

Engine

WarehouseEngineCar

OWNERSHIP AND
RESPONSIBILITY

Warehouse
- spares : Engine*[10]

• Aggregation allows part sharing

• When two wholes share a part

• Which whole “owns” the part?

• Which whole has responsibility for the part?

• Which whole destroys the part?

• Creating the part is unimportant

Presenter Notes
Presentation Notes
You might ask yourself if aggregation is the best relationship to bind an Engine to a Car. After all, we usually imagine the Engine staying with the Car as we drive it down the road. But what if the Car is a racecar with several spare Engines? Aggregation allows a whole object to share its parts with other program objects. So, the program could have a class named Warehouse that manages the location of all the Engines, including the one in the racecar. The Warehouse tracks the Engines with an array of pointers. We’ll return to this idea when we finish with aggregation.When multiple objects share a part, which one creates the part is generally not a concern. However, which object destroys or deletes it is a crucial concern. It’s convenient for programmers to mentally assign one of the sharing objects as the part’s owner. The owner is the object assigned the responsibility of deleting a part. Sometimes the problem suggests which whole is most naturally the owner. Otherwise, programmers may choose whichever makes the program easiest to write.

void car::set_motor(double s, int c)
{

if (motor != nullptr)
delete motor;

motor = new Engine(s, c);
}

void car::set_motor(Engine* e)
{

if (motor != nullptr)
delete motor;

motor = e;
}

class Car
{

private:
Engine* motor = nullptr;
string model;

public:
Car(string s) : model(s) {}

void set_motor(double s, int c);
void set_motor(Engine* e);

};

SETTER INITIALIZATION AND
MANAGEMENT

Presenter Notes
Presentation Notes
In this example, the class specification initializes the pointer variable, and the class has two setter functions to update it as needed. Both functions check for and delete an existing part before creating a new one. The first setter builds the part from the “raw data” passed in through its parameters. The second setter builds the aggregation relationship with an existing Engine object. The if-tests are optional.

INHERITANCE & AGGREGATION 1

Student
- gpa : double
+ Student(n : string, g : double, c : string, s : string)

Address
- city : string
- state : string
+ Address(c : string, s : string)

Person
- name : string
+ Person(n : string, c : string, s : string)

Presenter Notes
Presentation Notes
Tracking and understanding the data movements through the constructors becomes more challenging when the program uses multiple relationships - this example couples aggregation with inheritance. We return to the Student-Person-Address example used previously to demonstrate composition. The only change to the UML class diagram is that aggregation replaces composition.

INHERITANCE & AGGREGATION 1

Student
- gpa : double
+ Student(n : string, g : double, c : string, s : string)

Address
- city : string
- state : string
+ Address(c : string, s : string)

Person
- name : string
+ Person(n : string, c : string, s : string)

Presenter Notes
Presentation Notes
As before, the example begins when the program instantiates a Student object. We begin following the data from the Student constructor to the Person and from the Person to the Address.

MULTI-CLASS EXAMPLE 1

class Address
{

private:
string city;
string state;

public:
Address(string c, string s)
: city(c), state(s) {}

};

class Person
{

private:
string name;
Address* addr; // aggregation

public:
Person(string n, string c, string s)

: addr(new Address(c, s)),
name(n) {}

};
class Student : public Person
{

private:
double gpa;

public:
Student(string n, double g, string c, string s) : Person(n, c, s), gpa(g) {}

};

Presenter Notes
Presentation Notes
The C++ code shows the data as the program passes it from one constructor to the next. Four data elements enter the Student constructor, which retains one element and passes three to its superclass, Person, by calling the Person constructor. The Person constructor retains one element and passes the remaining two to the Address constructor. Making the Address variable, addr, a pointer, and using the new operator to create the Address object are the only differences between the composition and aggregation examples.

INHERITANCE & AGGREGATION 2

Owner
- account : int
+ Owner(n : string, a : int, pn : string, v : string)

Pet
- name : string
- vaccinations : string
+ Address(pn : string, v : string)

Person
- name : string
+ Person(n : string)

Presenter Notes
Presentation Notes
This example moves the aggregation relationship from the super- to the subclass.

INHERITANCE & AGGREGATION 2

Owner
- account : int
+ Owner(n : string, a : int, pn : string, v : string)

Pet
- name : string
- vaccinations : string
+ Address(pn : string, v : string)

Person
- name : string
+ Person(n : string)

Presenter Notes
Presentation Notes
As in the corresponding composition example, we begin following the data when the program instantiates an Owner object. The constructor passes some data to the superclass, Person, and the rest to the part class, Pet.

MULTI-CLASS
EXAMPLE 2

class Pet
{

private:
string name;
string vaccinations;

public:
Pet(string pn, string v)

: name(pn), vaccinations(v) {}
};

class Person
{

private:
string name;

public:
Person(string n) : name(n) {}

};
class Owner : public Person
{

private:
Pet* my_pet; // aggregation
int account;

public:
Owner(string n, int a, string pn, string v)

: Person(n), my_pet(new Pet(pn, v)), account(a) {}
};

Presenter Notes
Presentation Notes
When the program instantiates an Owner object, its constructor calls the Person and Pet constructors – initializing inheritance first, then aggregation. The new operator returns a pointer to the newly created Pet object, which the constructor saves in my_pet.

	Building Aggregation:�Whole-Part with pointers
	Aggregation
	Person class
	Person class member functions
	Constructor Initialization
	Ownership and Responsibility
	Setter Initialization And management
	Inheritance & Aggregation 1
	Inheritance & Aggregation 1
	Multi-class Example 1
	Inheritance & Aggregation 2
	Inheritance & Aggregation 2
	Multi-class Example 2

