DESTRUCTORS

An inverse and complement to constructors

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Much like addition and subtraction or multiplication and division are inverse operations, constructors and destructors are inverse functions. Although constructors and destructors perform opposite tasks, they play complementary roles in a program. We can better understand their complementary relationship by understanding the distinct but vital programming problems each solves.

CONSTRUCTORS AND DESTRUCTORS

header
TS S A YU S R YU S A
node header; Dynamic data structures
header->link = nullptr; Pointers must be initialized
Heap memory must be deallocated
node* 1 = &header; Libraries include startup and shutdown

functions
while (1->link != nullptr)

1 = 1->link; Too easy for programmers to forget to

call the functions

node* temp = new node();

Presenter Notes
Presentation Notes
Linked lists are simple data structures first presented in Chapter 4 that can help us understand how constructors and destructors benefit programming. We create a “node” class with a pointer member named “link.” A program builds a linked list by linking node objects together. The link in one object points to the next node in the list. The program instantiates the first node in the list, “header,” as a “handle” for the whole list.
Some operations, for example, finding the last node in the list, require the programmer to initialize the header link. And, each time the program adds a new node to the list, it creates it on the heap with the new operator. The program must carefully delete all the nodes when it is finished with the list.
In the old C-programming days, data structure libraries typically included functions to initialize new lists and to deallocate the nodes when the program finished with them. But it was too easy and too common for C programmers to forget to call the functions. While constructors and destructors can perform more complex operations, their automatic execution prevents programmers from forgetting to call them, ensuring correct startup and shutdown.

MEMORY LEAKS

OVERWRITING AN ADDRESS LOST ADDRESS
Person* pl = new Person; ¥01d £0)
pl = new Person; Person* p2 = new Person;
}

* Memory allocated for the objects is unreachable, becoming “garbage”
* The operating system reclaims lost memory at program termination
e Destructors help prevent some memory leaks, but not these

Presenter Notes
Presentation Notes
Although modern computers seem to have unlimited memory, the operating system allocates only a small portion to each program. Exhausting its memory causes a program to fail, so a program must deallocate memory when it finishes with it. Destructors help automate memory management by deallocating memory when the program destroys an object.
The new and delete operators allocate memory from and return it to the heap. A “memory leak” occurs when the program loses the heap memory’s address and cannot use or delete it. Destructors help keep programmers from creating some memory leaks but not all.
First, the program allocates memory for an object and saves its address in pointer p1. The next statement allocates more memory and also saves its address in p1. Saving the new address overwrites or replaces the previous address, losing it. Once its address is lost, the first object is unreachable, unusable, and the program cannot delete it.
The second example allocates memory for an object and saves its address in p2. But p2 is a local or stack variable, so the program deallocates it when the function ends. However, the program doesn’t deallocate the heap memory for the object, and it becomes unreachable and unusable.
We must be aware of these errors and consciously watch for them because destructors can’t keep us from making them.

Person

Person © string

- name : string* = nullptr

- weight : int=0
- height : double =0
+ Person()

+ Person(n : string, w: int, h : double)
+ Person(w : int, h : height)

+ ~Person()

+ setName(n : string®) : void

WHERE DESTRUCTORS DO HELP

Presenter Notes
Presentation Notes
Fortunately, destructors help when the program uses aggregation: a part object bound to a whole with a pointer. Destructor names are the same as the class name but begin with a tilde character. Destructors do not have a return type or any parameters.

THE FUNDAMENTALS OF OBJECT
CONSTRUCTION AND DESTRUCTION

CONSTRUCTOR DESTRUCTOR
class Whole Whole: :~Whole
{ {
private: if (p != nullptr)
Part* p = nullptr; delete p;
public: }s

Part() : p(nullptr) {}

Presenter Notes
Presentation Notes
We can initialize the aggregation pointer variable in the class specification or with a constructor. The constructor is appropriate when the program needs a more complex initialization. The key feature of a destructor supporting aggregation is deleting the part object. Modern C++ programs should function properly when the delete operand is nullptr, but in the past, I’ve seen programs fail, so I habitually include the if-test.

IMPLICIT DESTRUCTOR CALLS

void g() void f()
{ {

Person pl("Wally"); Person* p2 = new Person("Dilbert");
} delete p2;

Presenter Notes
Presentation Notes
p1 is a local (stack) variable, and the program deallocates it when the function (or block) ends. The program automatically or implicitly calls the destructor if the variable is an object instantiated from a class with a destructor.
Like the memory leak example, p2 is a pointer. But unlike the previous example, the delete operator signals that the program no longer needs the object whose address p2 saves. The delete operator returns p2’s memory to the heap and triggers a call to the Person destructor.

	Destructors
	Constructors and Destructors
	Memory leaks
	Where Destructors Do Help
	the fundamentals of object�construction and destruction
	Implicit Destructor Calls

