ACTOR |

Implementing and using basic inheritance

Delroy A. Brinkerhoff


Presenter Notes
Presentation Notes
Actor 1 is the first in a related sequence of increasingly complex example programs. The first two versions focus on inheritance, while subsequent versions include additional class relationships.



ACTOR | CLASS DIAGRAM

Person
-name : string
+Personin : string)
+displayi) : void

Actor

-agent ;string

+Actorin : string, a : string)

+displayi) - void

Star

-halance : double

+5tarin : string, a: string, b : double)
+displayl) : void

Actor examples don’t solve “real” problems
Actor I:all classes in a single file
An inheritance hierarchy can be arbitrarily tall and wide

Information is “pushed” upward through chained
constructor calls

Information is “pulled” downward through chained display
function calls

You can generalize the display function syntax to call other
overridden member functions



Presenter Notes
Presentation Notes
The Actor 1 example doesn’t solve a real problem but demonstrates how to create and use a multi-level inheritance hierarchy. It specifies three, classes related by inheritance, that override a simple display function. Keeping the program as simple as possible, it places the classes and a small driver in a single file. A three-level hierarchy is sufficient to demonstrate UML class diagrams and all the inheritance syntax.
A Star is an Actor, and an Actor is a Person. The UML class diagram conveys these relationships with the inheritance symbol: the arrowhead attaches to the superclass, and the undecorated end attaches to the subclass. So, Actor is both a sub- and superclass.
An inheritance hierarchy can be arbitrarily tall and wide. Studying the Actor and Star classes, we can extend the demonstrated syntax to form arbitrarily tall and wide hierarchies. The example illustrates how to “push” data upwards through the constructors and to “pull” it downwards through chained display function calls. You can generalize the display function calls to call any overridden function in the inheritance hierarchy.



maln

int main()
{
// Automatic variable/object

Star s("John Wayne", "Cranston Snort", 50000000);
s.display();

// Dynamic variable/object
Star* s2 = new Star("John Wayne", "Cranston Snort", 50000000) ;
s2->display();

return 0;


Presenter Notes
Presentation Notes
Let’s begin with the main function, which is the demonstration’s test driver. Inheritance is compatible with objects created on the stack or the heap. Either way, the instantiation automatically triggers a call to the Star constructor and passes three arguments. Part of the data is passed upwards through successive function calls, and each class retains some data to initialize its member variables.



BUILDING INHERITANCE

class Person

{
};

Person

class Actor : public Person
{ Actor

};

class Star : public Actor Star
{

};


Presenter Notes
Presentation Notes
We begin by building the inheritance relationship. We’ll add detail to each class in just a moment. We denote an inheritance relationship by including the superclass name as part of the subclass specification. C++ implements inheritance by embedding instances of the superclass inside the subclass object.
The order in which we specify the classes is significant. When the program instantiates an object, it allocates space to hold it. So, when it creates a Star object, it needs to “know” the size of the Star, including the embedded Actor and Person objects. The compiler can only “know” the superclass sizes if they are fully specified before it processes the subclass. The compiler reads the program file once, from top to bottom, so we must specify the classes in precisely the order shown.



THE Person CLASS

class Person

{

private:
string name;

public:
Person(string n) : name(n) {}

void display() { cout << name << endl; }

e



Presenter Notes
Presentation Notes
Although the Person class is simple, there are two details to note as we move forward. First, the class has one member variable, name, which the member functions can access without additional syntax. Second, the constructor has a single parameter of string type.



THE Actor CLASS

class Actor : public Person

{

private:
string agent;

public:
Actor(string n, string a)

void display()

{
Person: :display();

cout << agent << endl;

F;

: Person(n), agent(a) {}



Presenter Notes
Presentation Notes
The Actor class is more complex. In addition to its member variable agent, it also inherits name from its superclass, Person. It can directly access agent without additional syntax, but name is private, and the Actor can only access it through the Prson’s public interface. The Person’s public interface consists of its constructor and the display function.
The Actor constructor receives the Person’s name and the Actor’s agent as parameters. It retains and initializes the agent with one element of the constructor’s initializer list. It passes the Person’s name to the Person class by calling the Person constructor. Note three significant features of the constructor call:
First, we call the superclass constructor with the superclass name.
Second, the constructor call must be the first element in the initializer list.
Finally, this is a function call, so the argument number and type must match the function definition shown previously.
The Actor and the Person classes each define a display function with the same number of parameters – zero in this example. So, we must be cautious to avoid an erroneous recursive function call when the Actor display function calls the Person function. We clarify the call to the Person display function with the superclass name and the scope resolution operator.



THE Star CLASS

class Star : public Actor

{

private:
double balance;

public:
Star(string n, string a, double b) : Actor(n, a), balance(b) {}

void display()

{
Actor: :display();

cout << balance << endl;

Iy


Presenter Notes
Presentation Notes
The Star class follows the same basic pattern established by the Actor class.
The Star constructor receives three values through its argument list and passes two to the Actor constructor, which passes one to the Person constructor. The Star constructor retains one argument to initialize the balance variable.
Similarly, the Star display function calls the Actor display, which calls the Person display. Each display function prints its class’s private member data before returning to the calling function.



	Actor 1
	Actor 1 class diagram
	main
	Building Inheritance
	The Person Class
	The Actor Class
	The Star Class

