ACTOR 2

Inheritance in multi-file programs

Delroy A. Brinkerhoff


Presenter Notes
Presentation Notes
Actor 2 builds on and extends Actor 1, making it crucial to study the previous example before continuing. The first version puts all class specifications in a single source code file. The second version moves each class specification into separate header files.



DECLARATION VS. DEFINITION

PROTOTYPES ONLY INLINE FUNCTIONS
class Person class Person
{ {
private: private:
string name; string name;
public: public:
Person(string n); Person(string n) : name(n) {}
void display(); void display()
}s { cout << name << endl; }

}s


Presenter Notes
Presentation Notes
A declaration introduces an identifier, also known as a name or symbol, to the compiler. When a program declares an identifier, the compiler puts it in the symbol table. A program can declare the same identifier many times without errors. A definition uses memory. When a program defines an identifier, the compiler allocates memory to hold its contents. A program must define an identifier exactly once.
A class specification containing only variable declarations and function prototypes is a declaration. But a specification containing one or more inline functions becomes a definition, and the program must not repeat it.
Including a class specification with inline functions in a program more than once causes a “multiple definition” error when we compile the program. The compiler doesn’t “know” which definition to use.



GUARDING CLASS SPECIFICATIONS

#include GUARD #pragma once

#ifndef #pragma once

if not defined

#define The “pragma” directive introduces
creates a macro or symbolic constant practical shortcuts
#endif May be system-specific

end if Non-ANSI features


Presenter Notes
Presentation Notes
C++ inherits the classic #include guard mechanism from C. Programmers implement this guard with three arcane preprocessor directives. We read the first as “if not defined.” The second directive is “define,” which we’ve used previously to create symbolic constants. We read the last directive as “end if.” Although these directives are cryptic, the ANSI C++ standard requires them, so they are guaranteed to work with any ANSI-compliant compiler.
Some compiler systems have many pragmas allowing programmers to access features specific to the hosting operating system or hardware. These pragmatically solve problems using system-specific shortcuts, replacing lengthier, more general solutions. But, because they are system-specific, they are not guaranteed to work on all computers or with all compilers. The “pragma once” is a newer preprocessor directive. Although the ANSI C++ standard doesn’t require it, it works on the most common desktop systems.
We’ll see how these directives work in the following examples.



SUPERCLASS
Person

#pragma once

#include <iostream>
#include <string>

using namespace std;

class Person

{.. .5

#ifndef PERSON H
#define PERSON H

#include <iostream>
#include <string>
using namespace std;

class Person

{.. .15

#tendif



Presenter Notes
Presentation Notes
Both the #include guard and pragma once ensure that a program doesn’t include a class specification more than once. In a few minutes, we’ll explore a situation with the potential for creating that error.
The pragma once is compact and straightforward for programmers to use. The pragma instructs the preprocessor to remember the following class specification and skip subsequent inclusions.
Alternatively, the #include guard is bulkier and more difficult to use and understand. But it relies on the long-standing preprocessor symbol table and directives. Let’s approach the example one step at a time.
First, the #ifndef and define directives require an identifier or symbol name. This name must be unique throughout the entire program. We traditionally write symbolic-constant names with all upper case letters. We form unique constant names by deriving them from the header file names and derive the file names from the classes they contain. Traditionally, we add an underscore at the beginning and replace the “.” with an underscore. Some programmers add a trailing underscore, while others don’t.
Next, we read #ifndef as “if not defined.” So, if _PERSON_H_ is not defined, the preprocessor reads, processes, and includes the following code in its output – everything down to the end-if. It defines the constant name by entering it into the symbol table. Usually, we provide a value when we #define a constant, but in this case, the definition is important but not the value, so it defines it as 1 by default.
Finally, if the preprocessor has already processed the header file, _PERSON_H_ will be defined. In that case, the preprocessor will skip everything from the #ifndef down to the matching #endif directive and doesn’t include the class specification in its output.



SUPER AND SUBCLASS
Actor

#pragma once #ifndef ACTOR H_
#define ACTOR_H_

#tinclude <iostream>

#include <string> #include <iostream>
#include "Person.h" #include <string>
using namespace std; #include "Person.h"

using namespac
class Actor : public Person

{ .. .} class Actor :
{. .. %

#tendif

e std;

public Person



Presenter Notes
Presentation Notes
The way programmers use the pragma once and the #include guard, is essentially the same for all classes. To build the inheritance relationship between the Actor and Person classes, we need to #include the Person header file. We place the #include directive inside the guard mechanism.



SUBCLASS

Star

#pragma once

#include <iostream>
#include <string>
#include "Actor.h"
using namespace std;

class Star : public Actor

{. ..}

#ifndef STAR H_
#define STAR H_

#include <iostream>
#include <string>

#include

"Actor.h"

using namespace std;

class Star

{

#tendif

. }5

: public Actor



Presenter Notes
Presentation Notes
The Star header file and the class specification follow the previous pattern. However, we must note that the Star class does not depend directly on Person. So, we only #include the Actor header file, which is sufficient to build the inheritance relationship between the Star and its immediate superclass.
Recall from the previous Actor 1 example that the three Actor classes use the string and iostream system classes. We must include their header files while moving the class specifications into separate headers.



maln

#include "Person.h"
#include "Actor.h"
#include "Star.h"

Person director("Steven Spielberg");
director.display();

Actor sidekick("Harvey Korman", "Dilbert");
sidekick.display();

Star big star("John Wayne", "Cranston Snort", 5000000);
big star.display();



Presenter Notes
Presentation Notes
We’re now at a point where we can look at an example with the potential for causing a “multiple definition” error. The code fragment presented here represents a client or application that uses our three Actor classes. Technically, we only need to include the Star header file because it includes the Actor header, which includes the Person header. But a good rule of thumb, one I highly recommend, is, “Whenever you use a class in any file, #include its header in that file.”
The application instantiates objects from the Person, Actor, and Star classes, so it explicitly #includes all three header files. This example illustrates how we can include a class specification more than once and why the guarding mechanism is needed.



ROBUST HEADER FILES

#include <iostream> #include "Person.h"
#include <string> #include "Actor.h"
using namespace std; #include "Star.h"
#include "Person.h" #include <iostream>
#include "Actor.h" #include <string>

#include "Star.h" using namespace std;


Presenter Notes
Presentation Notes
Programmers sometimes write code that seems to work even though it is incorrect in some way. We should never confuse being lucky with being right. Conversely, robust code runs in a variety of conditions without failing. To understand this situation, let’s imagine that we have moved the three Actor classes to separate header files but neglected to include the two system header files.
The two scenarios presented here represent the beginning of an application program file. It’s not unreasonable to imagine that the application uses and includes the string and iostream classes.
The first scenario compiles because the preprocessor reads the lines of code from the top downwards, incorporating the system classes before processing the Actor classes. The second scenario fails because the string and iostream classes are not read in time for the Actor classes to use them.
Robust code doesn’t depend on application programmers knowing that one sequence of include directives works while another does not. We make the Actor classes more robust by protecting them with one of the guarding mechanisms and by following the rule of thumb of including a class’s header file wherever we use it. In this example, the robust version works even when the application code doesn’t use the string or iostream classes.



	Actor 2
	Declaration vs. Definition
	guarding class specifications
	superclass�Person
	super and subclass�Actor
	subclass�Star
	main
	Robust Header Files

