
OVERLOADED OPERATORS AND
friend FUNCTIONS

Reusing operators

Delroy A. Brinkerhoff

OPERATORS

• An operator is a function with a special calling syntax

• “Regular” functions:

• y = sqrt(x);

• p = pow(b, e)

• Operators

• z = x + y

• -n

• new person(“Dilbert”);

OPERATOR OVERLOADING

• Is a form of function overloading (i.e., they are functions named operator☺
where ☺ is an overloadable operator)

• Does not change the meaning of any operator for an intrinsic data type

• Cannot alter the precedence or associativity of an operator

• Cannot change the number of arguments

• Cannot create a new operator (e.g., **)

• Overloaded operators should be used intuitively (e.g., in a way similar to the
original meaning)

friend FUNCTIONS

• friend functions are not members of a class, but are still allowed access to
private class features

• A function may be a friend of more than one class (called a bridge function)

• A function must be declared as a friend in a class

• Can be inline

• Can be defined outside of a class

• friend functions are most often used with overloaded operators

OPERANDS

• Operands are the data that operators
operate on (i.e., function arguments)

• Operators are characterized by the
number of operands that they require

• Unary

• 1 operand: *x, &a, -n

• Binary

• 2 operands: x*y, x+y, cout << x

Explicit Arguments

Unary Binary

Member 0 1

friend 1 2

Function calls:
implicit.function(explicit);
function(explicit, explicit);

	OVERLOADED OPERATORS AND friend FUNCTIONS
	Operators
	Operator Overloading
	friend functions
	Operands

