OVERLOADED OPERATORS AND

friend FUNCTIONS

Reusing operators

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Overloaded operators are just functions with a different, specific naming convention. Their unusual but familiar calling syntax sets them apart from most functions appearing previously. Overloaded operators and friend functions are independent - programs can use friend functions without overloaded operators and operators without friends. Nevertheless, programs often use them together. Keyboards have limited symbols representing operators, and overloading them allows programmers to reuse them with instances of their classes.

OPERATORS

An operator is a function with a special calling syntax
“Regular” functions:

y = sqrt(x);

p = pow(b, e);
Operators

Z =X+ Y;

_n;

Presenter Notes
Presentation Notes
C++ signals a "regular" function call with a pair of parentheses - the function call operator. The parentheses enclose the argument list, consisting of zero or more arguments. Conversely, operators generally have one or two operands. When overloaded, these operators call functions, and the operands correspond to the arguments passed to the function's parameters.

OPERATOR OVERLOADING

s a form of function overloading (i.e., they are functions named operator®)
where @) is an overloadable operator)

Cannot change the number of operands (or arguments)

Cannot alter the precedence or associativity of an operator

Does not change the meaning of any operator for an fundamental data type
Cannot create a new operator (e.g., **)

Overloaded operators should be used intuitively (e.g., in a way similar to the
original meaning)

Presenter Notes
Presentation Notes
C++ forms the names of overloaded operators with the "operator" keyword followed by the operator symbol, represented here by the smiley face.

The C++ compiler follows the same rules when processing the original and overloaded operators, implying that overloaded operators must adhere to the original operator syntax. So, overloaded operators require the same number of operands and have the same precedence and associativity as the original operator. Furthermore, programs can't change the meaning or behavior of the original operator. For example, they can't alter or overload the plus or addition operator as it applies to integers or doubles. Finally, programmers can't create new operators; they can only overload existing ones. For example, FORTRAN uses two adjacent asterisks as the exponentiation operator, but C++ doesn't have that operator, and programmers can't add it.

When overloading an operator, programmers should follow one last "rule of thumb:" The new overloaded operator should have an intuitive meaning similar to the original meaning. This rule is entirely subjective, as what is intuitive to one may be confusing to another. Nevertheless, keeping the rule in mind helps us to write better programs.

friend FUNCTIONS

friend functions are not members of a class, but are still allowed access to
private class features

A function may be a friend of more than one class (called a bridge function)
A function must be declared as a friend in a class

Can be inline

Can be defined outside of a class

friend functions are often used with overloaded operators

Presenter Notes
Presentation Notes
friend functions are not members of the befriending class, but they are nevertheless allowed to access its private features. As a simple analogy, think of a trusted neighbor: the neighbor may not be a member of your family, but because they are trusted, you might give them a key to your house. You grant the neighbor increased access to your house so they can help you solve a problem (like bringing in your mail while you are on vacation) that they could not solve without the special privilege. We create friend functions for the same reason: to help us solve otherwise challenging or impossible programming problems.

A function can be a friend of more than one class, and when used this way, it is called a "bridge function."

For a function to become a friend of a class, the class must declare it as a friend. This requirement prevents a function from arbitrarily becoming a friend of a class, circumventing its encapsulation. If a function is short and only used in the context of the befriending class, it may be defined inline in the class. Longer or more widely used functions are defined outside the class.

Although friends and operators are independent of one another, programmers often use them together, and most of the text's friend examples appear in conjunction with overloaded operators.

OPERANDS AND ARGUMENTS

Implementation

— | owy | ey

x.operator() x.operator(y)
Member
-X X - y
operator(x) operator(X,y)
friend

- X X -y

Presenter Notes
Presentation Notes
All operators, built-in and overloaded, have operands representing the data they operate on. When we overload an operator, we do so by writing a new function. The operator's operands correspond to the function call's arguments. Two concepts determine how many implicit and explicit arguments the operator passes to the implementing function:

The first concept is the number of operands the operator requires: unary operators require one operand, while binary operators require two.

The second concept is the function's implementation: as a member or a friend. Member functions always have precisely one implicit argument, which the dot or arrow operator binds to the function during the call. Non-member function calls, including friend functions, must explicitly pass all arguments inside the parentheses.

So, when we write a member function implementing a unary operator, it has one implicit argument but no explicit arguments. The function for the same unary operator implemented as a friend or non-member doesn't have an implicit argument but has an explicit one.

The implementing function for a binary operator has one implicit and one explicit argument when implemented as a member and two explicit arguments when implemented as a friend.

	OVERLOADED OPERATORS AND friend FUNCTIONS
	Operators
	Operator Overloading
	friend functions
	Operands and Arguments

