
OPERATORS AS
MEMBER FUNCTIONS

Definition and Call

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
The chapter introduces two new and independent function notations: overloaded operators and friend functions. While programmers can use one notation without the other, they often use them together. Taking the smallest possible steps, we first explore overloaded operators as member functions, then make them friends in the next section. The video begins with an artificially simple example introducing the operator syntax and concludes with a brief but authentic example.

UML

class foo
{
 private:
 int field;
 public:
 foo operator+(foo right);
};

C++

CLASS WITH AN
OVERLOADED OPERATOR

foo

-field : int
+operator+(right : foo) : foo

Presenter Notes
Presentation Notes
The UML class diagram on the left represents a class with one member variable and one member function. The C++ code on the right corresponds to the UML class diagram. The function name is formed with the keyword “operator” followed by the addition operator, overloading it for the foo class. Significantly, the function only has one explicit argument appearing inside the parentheses in both representations. The single argument notwithstanding, this function does represent a binary operator.

IN CLASS

class foo
{
 private:
 int field;
 public:
 foo operator+(foo right)
 {
 return foo(field + right.field);
 }
};

class foo
{
 private:
 int field;
 public:
 foo operator+(foo right);
};

foo foo::operator+(foo right)
{
 return foo(field + right.field);
}

EXTERNAL

FUNCTION DEFINITION

Presenter Notes
Presentation Notes
Like any member function, programmers can define the operators inside or outside the class specification. If defined outside, the class specification must have a prototype, and the definition must include the class name and the scope resolution operator. Whenever the program calls a member function, it temporarily binds an object to the function. We previously called that object the implicit object, this object, the calling object, or the bound object, and these terms are still appropriate for an overloaded operator. The function call automatically binds the implicit object to the function, allowing it to access the bound object’s variables without an explicit name. However, the function must explicitly name the argument objects to access their variables.

FUNCTION CALL NOTATIONS

foo foo::operator+(foo right)
{
 return foo(field + right.field);
}

• foo f1;

• foo f2;

• foo f3;

• f3 = f1.operator+(f2);

• f3 = f1 + f2;

Presenter Notes
Presentation Notes
Aside from their names, overloaded operators look like other C++ functions. The feature that sets them apart from other member functions is how programs typically call them. The operator notation is a function call but doesn’t use parentheses. Instead, the call is an expression formed by the overloaded operator and its operands. Although uncommon, programmers can call overloaded operators with a more traditional function call notation using parentheses. This syntax is a helpful bridge explaining how overloaded operators work but is not used in practice. The color coding emphasizes the corresponding objects in various program statements.

THE RELATIONSHIP BETWEEN
OPERANDS AND ARGUMENTS

• The left-hand operand is always the
object bound to the function call (i.e., the
this or the implicit argument)

• The right-hand operand is always the
argument in the parentheses (i.e., the
explicit argument)

Presenter Notes
Presentation Notes
The correspondence is consistent throughout all C++ programs. Specifically, the left-hand operand, highlighted in red, is always the implicit object, and the right-hand operand, highlighted in blue, is always the explicit object passed as an argument. Knowing the correspondence helps us correctly use operators like ‘-’ and ‘/’ where the operand order is significant and will help explain the need for friend functions in the next section.

PROBLEM: ADDING OBJECTS AND
FUNDAMENTAL TYPES

foo foo::operator+(int right)
{
 return foo(field + right);
}

SOLUTION: OVERLOADING
OVERLOADED OPERATORS

OVERLOADING OVERLOADED
OPERATORS

Presenter Notes
Presentation Notes
Imagining that adding an integer and a foo object is valid, we see that the original overloaded foo addition operator cannot complete the operation. The problem is the addition operator’s signature only matches expressions with two foo operands. Overloading the overloaded addition operator is one technique programmers can use to solve the problem. As foo is an artificial example class, we assume a simple meaning for the addition operation, shown here as externally defined.

THE fraction CLASS

class fraction
{
 private:
 int numerator;
 int denominator;

 public:
 fraction(int n = 0, int d = 1);
 fraction operator+(fraction f2);
 fraction operator+(int i);
};

Presenter Notes
Presentation Notes
A simplified version of the Chapter 9 fraction example provides an authentic use of operator overloading. The fraction class represents a numeric data type with two integers, one each for the numerator and denominator. Being a numeric type, fractions “naturally” respond to the standard arithmetic operators. The constructor is unchanged from the previous example, so this example doesn’t present its details.

IN-CLASS FUNCTION DEFINITION

class fraction
{
 public:

 fraction operator+(fraction f2)
 {
 int n = numerator * f2.denominator + f2.numerator * denominator;
 int d = denominator * f2.denominator;

 return fraction(n, d);
 }
};

Presenter Notes
Presentation Notes
The example defines the addition operator in the class but could define it externally. Member-variable names without an object name refer to the implicit or “this” object. The program accesses the argument object’s member variables with the argument name and the dot operator. The function calculates the numerator and denominator of the sum and calls the constructor to finish the operation.

EXTERNAL FUNCTION DEFINITION

fraction fraction::operator+(int i)
{
 int n = numerator + denominator * i;

 return fraction(n, denominator);
}

Presenter Notes
Presentation Notes
Defining the function externally requires a prototype in the class specification. The function is short enough that the example could define it in the class specification. This version adds a fraction and an integer. An integer, i, is transformed into a fraction as i / 1. Plugging these values into the two-fraction formula produces this formula.

	Operators As�Member functions
	Class with an�Overloaded Operator
	Function Definition
	Function Call Notations
	The relationship between�Operands and Arguments
	Overloading overloaded operators
	the fraction class
	in-class function definition
	External function definition

