
OPERATORS AS
friend FUNCTIONS

Definition and Calling Syntaxes

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Implementing overloaded operators as member functions provides all the benefits offered by the object-oriented model while allowing programmers to use an intuitive operator syntax to call a function. Nevertheless, there are some problems that friend functions can solve that members cannot.

friend FUNCTION REVIEW

• friend functions are not members of the befriending class

• Nevertheless, friend functions have access to the private features of a class

• friend functions must be declared as friends in the class specification with
the “friend” keyword

• Overloaded operators are often implemented as friend functions

• There is no UML notation to indicate a friend function

Presenter Notes
Presentation Notes
Throughout the following discussion, it's essential to remember that friend functions are not members of the befriending class. However, declaring a function a class friend allows it to access the befriending class's private data. It's equally important to understand that classes, not functions, establish a friend relationship. This rule prevents a function from inappropriately becoming a friend of a class and thereby gaining undesirable access to the class's private features. Instead, classes must explicitly declare a function as a friend using the "friend" keyword – and this declaration can only take place in the class's specification. Friend functions are beneficial in conjunction with overloaded operators. Unfortunately, the UML doesn't provide dedicated syntax for denoting friend functions – that is, there is no UML analog to the C++ "friend" keyword.

UML

class foo
{
 private:
 int field;
 public:
 friend foo operator+(foo left, foo right);
};

C++

CLASS WITH AN
OVERLOADED friend OPERATOR

foo

-field : int
+operator+(left : foo, right : foo) : foo

Presenter Notes
Presentation Notes
The UML class diagram on the left-hand side illustrates an overloaded function that requires two explicit arguments. The C++ code on the right-hand side illustrates the corresponding C++ class, including the addition operator function. Programmers put the "friend" keyword at the beginning of the function prototype or the in-class definition. Note that the function requires two explicit arguments, one for the left-hand operand and a second for the right-hand operand. The class only provides a function prototype, so the function definition must occur elsewhere.

FUNCTION DEFINITION

• Function is not a member, so

• The class name and the scope resolution operator are not used

• All operands are passed as explicit arguments inside the parentheses

• All fields must be accessed using argument names

foo operator+(foo left, foo right)
{
 return foo(left.field + right.field);
}

Presenter Notes
Presentation Notes
While programmers can define short functions in the class specification, they typically put longer functions in a separate source code or .cpp file. The class name and the scope resolution operator are necessary when defining a function outside its class, but not for a friend function. As this function is not a member of the foo class, the function call doesn't bind it to an object, implying that the call passes both operands as explicit arguments inside the parentheses, and all data members must be bound to an argument name. Notice that the left-hand operand is always the first function argument, and the right-hand operand is always the second function argument. Also, external function definitions don’t include the “friend” keyword; it only appears in the class specification.

USED IN PRACTICE

• foo a;

• foo b;

• foo c;

• c = a + b;

• foo a;

• foo b;

• foo c;

• c = operator+(a, b);

USED FOR ILLUSTRATION

CALLING SYNTAXES

Presenter Notes
Presentation Notes
The C++ syntax recognizes two ways to call an overloaded operator implemented as a friend function. In practice, programmers typically use the operator syntax, with the operands appearing on either side of the operator. This notation is identical to the notation used to call an overloaded operator function implemented as a member function. So, looking at just the call, it isn't possible to tell if the operator function is a member or a friend.
Although not used in practice, the function call syntax is valid and acts as a bridge, illustrating the relationship between the operator and function call notations.

MEMBER FUNCTION friend FUNCTION

THE RELATIONSHIP BETWEEN
OPERANDS AND ARGUMENTS

Presenter Notes
Presentation Notes
It's necessary to understand the relationship between operator operands and function arguments to understand why programmers often overload operators with friend functions. The operator notation for member and friend functions is the same, but the functional notation is not. Calling a member function binds the function to the first object and passes the second as an argument, while friends pass both objects as arguments.

WHY friend FUNCTIONS?
THE PROBLEM WITH MEMBER OPERANDS

• Addition is commutative:

• f1 + f2 ≡ f2 + f1

• f1 + 5 ≡ 5 + f1

• We can implement f1 + 5 with another
overloaded member function:

• foo operator+(int right);

• But the dot operator’s left-hand operand
must be an object - not a fundamental
type like “int”

f1 + 5

f1.operator+(5)

5 + f1

5.operator+(f1)

Presenter Notes
Presentation Notes
We need to add two more details to set the stage to explore how friend functions can solve a problem that member functions cannot. First, we must recall that addition is a commutative operation: switching the operand order doesn't change the result. An overloaded addition operator implemented as a member function can deal with commutativity if both operands are objects. However, imagine that f1 and f2 represent fraction objects. Adding a fraction and an integer is a valid operation, and the operand order shouldn't affect the result.
Programmers can create another overloaded operator member function to add an object and an integer, and the resulting code makes sense when viewed with either calling notation. However, if we switch the operand order, the left-hand operand becomes an integer, and the call fails. It fails because the program can't bind a function to a fundamental type – the dot operator's left-hand operand must be an object.

FUNCTIONS

• foo operator+(foo right);

• foo operator+(int right);

• friend operator+(int left, foo right)

• foo f1, f2, f3;

• f3 = f1 + f2; // f1.operator+(f2)

• f3 = f1 + f2; // f1.operator+(5)

• f3 = f1 + f2; // operator+(5, f2)

FUNCTION CALLS

COMPLETE SOLUTION

Presenter Notes
Presentation Notes
The third operator function, implemented as a friend, requires the call to pass all operands as arguments inside the argument list. Passing the integer as an explicit argument means the call no longer uses the dot operator. Together, the three functions provide a complete solution for the addition operation. However, the three functions seem excessive, especially considering that a robust class might require subtraction, multiplication, and division.

ONE FUNCTION TO RULE THEM ALL

• Conversion constructor

• foo(int f) : field(f) {}

• Overloaded operator implemented as a friend

• friend foo operator+(foo left, foo right);

f1 + f2

operator+(f1, f2)

f1 + 5

operator+(f1, 5)

5 + f1

operator+(5, f1)

Presenter Notes
Presentation Notes
If the class includes an appropriate conversion constructor, then a single friend function can handle all three possible ways of using or calling the overloaded addition operator. In the first case, both operands are objects, and the function call behaves as expected. In the second and third cases, the compiler converts the integer to an object by generating code calling the conversion constructor, which converts the 5 into an object and then generates the code to call the overloaded addition operator.
A friend function can handle the third case with a fundamental-type left-hand operand, whereas a member function cannot. Furthermore, a single friend function and an appropriate conversion constructor can handle the other two cases, resulting in a compact, efficient solution. Furthermore, the conversion constructor allows programmers to implement the remaining arithmetic operators (subtraction, multiplication, and division) with a single friend function for each operator.

	Operators as�friend Functions
	friend Function Review
	Class with an�Overloaded friend Operator
	Function Definition
	Calling Syntaxes
	The Relationship between�Operands and Arguments
	Why friend Functions?�The problem with member operands
	Complete Solution
	One Function to Rule Them All

