
CONVERSION OPERATORS

Changing a value’s data type

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Conversion operators are similar to conversion constructors in converting an object to another value with a different data type. I find it convenient to think of them as opposite operations, like addition and subtraction. I think of constructors as “pulling” data into an object and operators as “pushing” it out.

FUNDAMENTAL TYPE CONVERSIONS

• Type promotions

• Typecasting

• Functions

• C-strings to numbers

• Numbers to C-strings

• string objects to numbers

• Numbers to string objects

• 10.0 + 5

• double d = 2;

• void function(double d);

• function(5);

• double average(…) { …; return 10; }

Presenter Notes
Presentation Notes
C++ has three mechanisms to convert between its fundamental or built-in datatypes. The textbook details the mechanisms in previous chapters. We review the fundamental type conversions here, but you should follow the “Review” links as needed. The following examples are deliberately brief, omitting unnecessary detail; specifically, ellipses replace extraneous code.The first mechanism is automatic type promotions, which occur when the compiler detects that two values have incompatible types and can safely convert one value to correct the incompatibility. In the first example, the compiler can’t add an integer and a double, but it can automatically convert the integer to a double, allowing it to complete the operation. Assignment, argument passing, and a function return can also trigger type promotions.

FUNDAMENTAL TYPE CONVERSIONS

• Type promotions

• Typecasting

• Functions

• C-strings to numbers

• Numbers to C-strings

• string objects to numbers

• Numbers to string objects

• (a + b) * c

• (double)2 / 3

• double(2) / 3

• Shape S;

• Circle C : public Shape;

• Shape S2 = (Shape)C;

Presenter Notes
Presentation Notes
Sometimes, a program can complete an operation in multiple ways, forcing programmers to choose one explicitly. A frequent example is grouping parentheses, one of three parenthesis applications. Another is typecasting, which C++ also implements with parentheses.Without programmer intervention, the program evaluates the division operation using integer division, truncating the result. If truncation is not the desired outcome, programmers can cast one of the operands, changing its type. The new or destination type forms the operator’s name, which the program calls using either the operator or function-call notation. Before evaluating the expression, the program converts the 2 to a double value.The final example converts a Circle object to a Shape. This conversion only makes sense in highly constrained situations, which the text covers in the next chapter. We create conversion operators by overloading the casting operator.

FUNDAMENTAL TYPE CONVERSIONS

• Type promotions

• Typecasting

• Functions

• C-strings to numbers

• Numbers to C-strings

• string objects to numbers

• Numbers to string objects

• atoi(“123)

• itoa(123)

• string s(“123”)

• stoi(s)

• to_string(123)

Presenter Notes
Presentation Notes
Typecasting only works when the source and destination types are “close” or “sort of the same.” So, we can cast between an integer and a double because they are “close” or “sort of the same” in the sense that they are both numbers. Programmers use functions to convert between dissimilar datatypes. The parentheses form the function call operator, the third meaning C++ gives them, suggesting programmers must exercise caution to use them correctly.

CONVERSION CONSTRUCTORS

Time::Time(int s)
{
 hours = s / 3600;
 s %= 3600;
 minutes = s / 60;
 seconds = s % 60;
}

fraction(int n = 0, int d = 1)
: numerator(n), denominator(d) {}

• fraction f1;

• fraction f2(5);

• fraction f3(2, 3);

Presenter Notes
Presentation Notes
Conversion constructors convert fundamental data or objects to an instance of the target or destination class - Time in the first example or a fraction in the second. Conversion constructors often have a single parameter, but that’s a notational convenience, making it easier for programmers to conceptualize and communicate about programs. Programmers define conversion constructors in the destination class: Time or fraction. The Time constructor converts one integer to a Time object, while the fraction constructor converts 0, 1, or 2 integers to objects - the default arguments allow programs to call the fraction constructor 3 ways.

CONVERSION OPERATORS

• operator int() { return hours * 3600 + minutes * 60 + seconds; }

• Time T(….);

• (int)T

• int(T)

Presenter Notes
Presentation Notes
Programmers overload the casting operator to form a conversion operator. Although this is not always the case, conversion operators typically work in the opposite direction from constructors, so programmers define them in the source class. For the Time example, a constructor converts an integer to a Time object, and the function converts a Time object to an integer. Finally, programmers may choose which casting notation they prefer.

CONVERSION OPERATORS

• operator double() { return (double)numerator / denominator; }

• fraction F(…);

• double d = (double)F;

• double d = double(F);

Presenter Notes
Presentation Notes
The fraction constructor, which programs can call three different ways, converts from 0 to 2 integers to a fraction. While it’s reasonable to convert the fraction 5/1 to an integer, converting a more general fraction, like 2/3, to an integer doesn’t make sense. However, converting it to a floating-point value, such as a double, is reasonable.

INCOMPATIBLE CONVERSIONS

• Typically, a class may not have a conversion constructor & conversion operator

• Time T(…);

• T + 30

• Fraction F(…);

• F + 5

Presenter Notes
Presentation Notes
Conversion constructors and operators are often mutually incompatible in the same class. Given the Time class’s two conversion functions, the addition operation is ambiguous. The compiler could call the constructor, converting 30 to a Time object, or the operator, converting T to an integer. This ambiguity causes a fatal compile-time error. The fraction example is similar. The compiler can “choose” to call the constructor, converting the 5 to a fraction. Alternatively, it can call the operator to convert F to a double, promote the 5 to 5.0, and then sum the resulting values.

	Conversion Operators
	Fundamental Type Conversions
	Fundamental Type Conversions
	Fundamental Type Conversions
	Conversion Constructors
	Conversion Operators
	Conversion Operators
	Incompatible Conversions

