
OVERLOADED
operator<< AND operator>>

Input and Output functions

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
The inserter and extractor operators are, first and foremost, just overloaded operators. But they are used a great deal and follow a very rigid pattern. These facts make them a special case, warranting their detailed study.




REVIEWING FUNCTION OVERLOADING

• Overloaded functions must have unique argument lists:

• void f(int x);

• void f(int x, int y);

• int f(int x);

• double f(int x);

• double f(double x);

• void print(ostream out, int x);

• void print(ostream out, double x);

Presenter Notes
Presentation Notes
It’s important to recall that overloaded functions must have unique parameter lists. This requirement may be satisfied by having a different number of parameters or different types of parameters. The functions may have the same or different return types, but a unique parameter list is always required. Some arguments may be the same, but at least one must differ.




class ostream

friend ostream& operator<<(ostream&, char);
friend ostream& operator<<(ostream&, char*);
friend ostream& operator<<(ostream&, short);
friend ostream& operator<<(ostream&, int);
friend ostream& operator<<(ostream&, long);
friend ostream& operator<<(ostream&, float);
friend ostream& operator<<(ostream&, double);

friend istream& operator>>(istream&, char&);
friend istream& operator>>(istream&, char*);
friend istream& operator>>(istream&, short&);
friend istream& operator>>(istream&, int&);
friend istream& operator>>(istream&, long&);
friend istream& operator>>(istream&, float&);
friend istream& operator>>(istream&, double&);

class istream

<iostream>

Presenter Notes
Presentation Notes
The iostream header file contains or includes the class specifications for many I/O classes, specifically the ostream and istream classes. The ostream or output stream class has many versions of the inserter operator, one for each kind of fundamental data type. Similarly, the istream or input stream class has many versions of the extractor operator, also one for each kind of fundamental data type. Their second argument distinguishes the functions.




operator<<
THE INSERTER

• ALWAYS a friend function

• ALWAYS follows the same pattern:

• returns ostream reference

• first argument ostream reference

• second argument reference to the friending class

friend ostream& operator<<(ostream& out, foo& me)
{
 out << me.field << endl;
 return out;
}

Presenter Notes
Presentation Notes
Programmers can overload the inserter and extractor operators for classes that they create. Both operators must be tied to a class, making each class version unique. Nevertheless, each operator must follow a very rigid, fixed pattern. Once you understand the pattern, writing a new overloaded I/O operator is relatively straightforward.
The inserter operator is always a friend function, always returns an ostream reference, and the first parameter is always an ostream reference. The second parameter is always a reference to an instance of the class to which the operator belongs. The function accesses each object field through the second parameter. Finally, the function always ends by returning the first parameter.
Simplistically, we can think of an ostream object as a hose whose input is a program and whose output is the screen. The “hose” takes a stream of bytes produced by an expression in a program and carries them to the console or the screen. An ostream object can also direct program output to files on a hard drive, flash drive, etc.




operator>>
THE EXTRACTOR

• ALWAYS a friend function

• ALWAYS follows the same pattern:

• returns istream reference

• first argument istream reference

• second argument reference to the friending class

friend istream& operator>>(istream& in, foo& me)
{
 in >> me.field;
 return in;
}

Presenter Notes
Presentation Notes
Like the inserter, the extractor operator follows a rigid, fixed pattern. The extractor operator is always a friend function, always returns an istream reference, and the first parameter is always an istream reference. The second parameter is always a reference to an instance of the class to which the operator belongs. The function accesses each field in the object through the second parameter. Like the inserter, the extractor always ends by returning the first parameter.
Again, we can think of an istream as a hose, but this time the input is the keyboard or a file, and the output is a program variable.



	Overloaded�operator<< and operator>>
	Reviewing Function Overloading
	<iostream>
	operator<<�The inserter
	operator>>�The Extractor

