
OVERLOADING
operator<< AND operator>>

Common practices and patterns

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
The overloaded I/O operators occupy an unusual position in C++ programs. Their overall structure must be sufficiently flexible to work with various objects while adhering to well-established patterns. This presentation leverages the patterns to establish standard practices, helping programmers overload the operators for classes they create.

CATEGORIZING OPERATOR ELEMENTS

• operator<< and operator>> consist of elements following a ridged pattern

• Organizing the elements into four categories makes it easier to present, learn,
and use them:

• Categories

• Unchanging elements

• The name of the defining or befriending class

• Programmer-chosen names

• Function-specific tasks

Presenter Notes
Presentation Notes
It is convenient to divide the I/O operators’ patterns into four categories. Doing so makes the functions easier to present, learn, and use. The pattern specifies many elements that are unchangeable or limited to two choices. Programmers often memorize these just by using them, a process called automation.
The second category, more flexible than the first, names the class that “owns” or befriends the operator. The pattern requires a reference to the target object, but the class name changes whenever programmers overload a new operator version.
The last parts of the pattern are more flexible than the first. First, programmers choose appropriate parameter names. Finally, they write function-specific statements that implement the steps necessary to fulfill the functions’ tasks.

UNCHANGING FUNCTION ELEMENTS

friend ostream& operator<<(ostream& out, fraction& f)
{
 // format and print f's members
 return out;
}

friend istream& operator>>(istream& in, fraction& f)
{
 // read data into f's members
 return in;
}

• Always friend functions
• Always have a stream reference return type
• The first parameter is always a stream reference
• Always ends by returning the first parameter

Presenter Notes
Presentation Notes
An abbreviated version of the fraction class’s I/O operators makes the categories more concrete while serving as simple examples.
Following the pattern, programmers implement both operators as friend functions.
The operators always return a reference to a stream object, either an input or output stream, depending on the operator.
The first parameter is always a reference to a stream object, again determined by the operator.
The functions always end by returning the first parameter.

BEFRIENDING CLASS NAME

friend ostream& operator<<(ostream& out, fraction& f)
{
 // format and print f's members
 return out;
}

friend istream& operator>>(istream& in, fraction& f)
{
 // read data into f's members
 return in;
}

• The pattern requires a second reference parameter
• Names the class defining or befriending the function

Presenter Notes
Presentation Notes
The second element category concerns the second parameter, which the program, following the pattern, passes by reference.
The parameter names the befriending class. The I/O operators process instances of this class. This example tailors the functions to operate on fraction objects.

PROGRAMMER-CHOSEN
PARAMETER NAMES

friend ostream& operator<<(ostream& out, fraction& f)
{
 // format and print f's members
 return out;
}

friend istream& operator>>(istream& in, fraction& f)
{
 // read data into f's members
 return in;
}

• Programmers choose appropriate parameter names

Presenter Notes
Presentation Notes
The C++ function syntax requires all functions, including those implementing overloaded operators, to name their parameters. Programmers choose appropriate names.

FUNCTION-SPECIFIC TASKS

friend ostream& operator<<(ostream& out, fraction& f)
{
 // format and print f's members
 return out;
}

friend istream& operator>>(istream& in, fraction& f)
{
 // read data into f's members
 return in;
}

• Functions are designed for specific objects or class instances
• A function’s exact operation depends on the befriending class’s members

Presenter Notes
Presentation Notes
Tailoring the functions to support a specific class implies that they have tasks and the statements necessary to complete them that are unique to each function.
In these examples, the output operator formats and displays a fraction’s member variables while the input operator reads and saves values in them.

class fraction
{
 private:
 int numerator;
 int denominator;
 public:
 friend ostream& operator<<(ostream& out, fraction& f);
 friend istream& operator>>(istream& in, fraction& f);
 private:
 void reduce();
};

SIMPLIFIED fraction CLASS

Presenter Notes
Presentation Notes
The video completes the I/O functions for the fraction class, providing concrete examples of the overloaded I/O operators. Although the class specification is still abridged, it includes the elements needed to complete the I/O examples. The class has two data members: a numerator and a denominator. The specification also has prototypes for three relevant functions, which the programmer defines in a separate source code file. The overloaded operators are friends, while reduce is a private “helper” function, reducing a fraction to the lowest terms.

INSERTER

ostream& operator<<(ostream& out, fraction& f)
{
 out << f.denominator << "/" << f.numerator;

 return out;
}

Presenter Notes
Presentation Notes
The example defines this version of the output operator outside the class specification, so it doesn’t include the “friend” keyword. Nevertheless, it is a friend because the fraction class specified it as such. The operation is straightforward: the function formats the numerator and denominator, separated by a slash, and the original inserter operator sends the output to the stream named by the first parameter.

EXTRACTOR

istream& operator>>(istream& in, fraction& f)
{
 cout << "Please enter the numerator: ";
 in >> f.numerator;
 cout << "Please enter the denominator: ";
 in >> f.denominator;
 f.reduce();

 return in;
}

Presenter Notes
Presentation Notes
The input operator is also defined in a separate source code file, making the “friend” keyword unnecessary. The function prompts a user to enter values for the numerator and denominator, reducing the fraction to the lowest terms by calling the reduce function.

CLIENT CODE

fraction left;
fraction right;

cin >> left;
cin >> right;
fraction result = left + right;
cout << result << endl;

MAPPING

MAPPING ARGUMENTS TO PARAMETERS

Presenter Notes
Presentation Notes
The client code on the left demonstrates how programs use overloaded operators in practice. The text detailed the overloaded addition operator in an earlier section.
The overloaded operators are friends or non-members, so the program passes both operands as explicit function arguments in the parentheses where they map to the named parameters.

	Overloading�operator<< and operator>>
	Categorizing Operator elements
	Unchanging Function elements
	Befriending class name
	Programmer-chosen�parameter names
	Function-Specific tasks
	Simplified fraction class
	Inserter
	extractor
	mapping arguments to parameters

