
operator<< AND operator<<
WITH WHOLE-PART

Overloading the I/O operators with

composition and aggregation

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Composition and aggregation are constructive relationships. They build large or whole objects from smaller parts. The relationship between the whole and part objects affects how programs use the I/O operators.

COMPOSITION

• One way – the whole “knows about” the
part

• Programs build composition relationships
by nesting the part object inside the
whole

• Established in a constructor

• Unchangeable after construction

• One way – the whole “knows about” the
part

• Programs build aggregation relationships
by defining a pointer member in the
whole pointing to the part

• Established at any time

• Changeable at any time

AGGREGATION

COMPOSITION AND AGGREGATION:
REVIEWING WHOLE-PART

Presenter Notes
Presentation Notes
Although both relationships are constructive, programs build them differently, significantly impacting how programs use the I/O operators. Both relationships are unidirectional, operating from the whole to the part, implying that the whole can send messages to its parts – the whole can call its parts’ functions.
C++ implements composition’s strong binding by embedding or nesting the parts inside the whole. Consequently, programs must build the relationship in a constructor and cannot change it afterward. Alternatively, C++ builds aggregation’s weak binding with pointers in the whole class. Each pointer points to a part object, allowing the program to establish or change the relationship at any time.

PART

class part
{
 private:
 string name;
 double cost;
 public:
};

class whole
{
 private:
 part my_part;
 int simple;
 public:
};

WHOLE

COMPOSITION

Presenter Notes
Presentation Notes
We assume a simple part with two fundamental type members to further the example. The whole has one fundamental type member and an instance of the part.

INSERTER WITH COMPOSITION

friend ostream& operator<<(ostream& out, part& me)
{
 out << me.name << endl;
 out << me.cost << endl;
 return out;
}

friend ostream& operator<<(ostream& out, whole& me)
{
 out << me.my_part << endl;
 out << me.simple << endl;
 return out;
}

Presenter Notes
Presentation Notes
The part inserter follows the previously established pattern to output its members. Typically, the whole prints its simple data and calls its parts’ inserters to print them. In the object-oriented vernacular, we say that the whole sends its parts the “print” or “display” message and the parts respond appropriately.

EXTRACTOR WITH COMPOSITION

friend istream& operator>>(istream& in, part& me)
{
 in >> me.name;
 in >> me.cost;
 return in;
}

friend istream& operator>>(istream& in, whole& me)
{
 in >> me.my_part;
 in >> me.simple;
 return in;
}

Presenter Notes
Presentation Notes
We use the similarities between the I/O operators to convert the extractors to the corresponding inserters. Replace the extractor operators with the inserter. Replace ostream with istream. And change “out” to “in.”

PART

class part
{
 private:
 string name;
 double cost;
 public:
};

class whole
{
 private:
 part* my_part;
 int simple;
 public:
};

WHOLE

AGGREGATION

Presenter Notes
Presentation Notes
The part remains unchanged from the composition example. The change necessary to implement aggregation is small but makes a significant difference – we make the part a pointer member.

INSERTER WITH AGGREGATION

friend ostream& operator<<(ostream& out, part& me)
{
 out << me.name << endl;
 out << me.cost << endl;
 return out;
}

friend ostream& operator<<(ostream& out, whole& me)
{
 if (me.my_part != nullptr)
 out << *me.my_part << endl;
 out << me.simple << endl;
 return out;
}

Presenter Notes
Presentation Notes
As the part remains unchanged, so does its inserter. But changing the part from an embedded object to a pointer in the whole has a profound impact. Accessing an object’s members with a null pointer is a runtime error. When a program uses the whole’s extractor, the part pointer can be null because the program can establish or change the relationship at any time. So, the inserter operator must test for that potential error condition and skip the output when the pointer is null. The part function’s second parameter is not a pointer, so the whole must dereference the part pointer to match the part function’s signature.

EXTRACTOR WITH AGGREGATION

friend istream& operator>>(istream& in, part& me)
{
 in >> me.name;
 in >> me.cost;
 return in;
}

friend istream& operator>>(istream& in, whole& me)
{
 if (me.my_part != nullptr)
 in >> *me.my_part;
 in >> me.simple;
 return in;
}

Presenter Notes
Presentation Notes
Despite the differences between the composition and aggregation versions of the I/O functions, we still use the similarities between the functions to convert the extractors to the corresponding inserters. Replace the extractor operators with the inserter. Replace ostream with istream. And change “out” to “in.”

	operator<< and operator<<�with whole-part
	Composition and Aggregation: Reviewing Whole-part
	Composition
	Inserter with composition
	Extractor with composition
	Aggregation
	Inserter with aggregation
	Extractor with aggregation

