operator()

An Introduction To Functors

Delroy A. Brinkerhoff


Presenter
Presentation Notes
Like most C++ operators, programmers can overload the function operator using the “operator” keyword and the operator’s “name” specified in this example by a pair of parentheses. Although the overloading syntax follows the pattern used throughout this chapter, the overloaded function operator has some unusual characteristics and specific uses that warrant a deeper exploration.



PARENTHESES

C++ implements three operations with

parentheses
Grouping
Casting
Functions

operator()
Function objects

Functors

Functor /
Function Object

Comparator



Presenter
Presentation Notes
Given the limited number of characters on most keyboards, C++ reuses many of them to represent different operators. Outside of operator overloading, it implements three distinct operators with parentheses: grouping, casting, and functions.
C++ programmers refer to instances of classes that overload the function operator as function objects or functors. Some people object to calling these objects “functors,” as other disciplines use the term differently, but it is a long-standing tradition that I continue here.
Functions are a generalizing construct that allows an algorithm to operate on application-supplied data without requiring the algorithm to be recreated whenever the data changes. Similarly, functors generalize complex algorithms by allowing them to use different functions without requiring the recreation of the algorithm for each function. Although many general functor uses are beyond the scope of an introductory text, comparators - specialized functors - are appropriate and represent a feature used in subsequent chapters.



OVERLOADING operator()

return-type operator()(parameter-1list)

return-type result = foo(args)

bool operator()()

bool operator()(const Employee& el, const Employee& e2) const


Presenter
Presentation Notes
Overloading the function operator utilizes the same syntax as overloading other operators, but the numerous adjacent parentheses make it confusing. Together, the first set of parentheses, shown in red, and the “operator” keyword, form a function name, which has a return type and zero or more parameters. The illustrated function call assumes that a class named “foo” defines the function.
Comparators generally return a Boolean value. Depending on their use and implementation details, they typically require zero, one, or two arguments, which may be fundamental types or complex objects.



THE NPL
PSEUDO RANDOM NUMBER GENERATOR

class NPL
{
public:
double operator()();
long operator() (long max);
}s5

long NPL::operator()(long max)
{

return (long)fmod(max * operator()(), max);
//return (long)fmod(max * (*this)(), max);



Presenter
Presentation Notes
The NPL class is an implementation of the Wichmann-Hill pseudo-random number generator. With its two overloaded function operators, it demonstrates a general functor. The first pair of parentheses, colored red, is part of the function name, while the second pair specifies the parameter list. The example omits the private member variables, the initializing constructor, and the definition of the first operator for simplicity. You can find the complete class in the textbook.
The second operator calls the first to generate a floating-point number and multiplies it by “max.” The “fmod” function calculates the floating-point remainder of its first argument divided by its second. In this example, it returns a floating-point value less than or equal to “max.” The alternate versions demonstrate two ways of calling the first operator. The first version uses the function name, while the second dereferences the “this” pointer.
The class illustrates the three operations C++ implements using parentheses. Reading left to right, the first pair forms the casting operator. The dereference operation has a lower precedence than the function operator, so the expression is surrounded by grouping parentheses. The remaining parentheses, red and black, are the function operator.



USING FUNCTORS

int main()

{
NPLnpl(41l, 67, 91);

for (int 1 = 100; i < 110; i++)
cout < npl() << " " << npl(i) << endl;

return 0;



Presenter
Presentation Notes
The syntax applications use to invoke a functor is straightforward, looking like any function call. In this example, the first call invokes the parameterless operator, returning a pseudo-random floating-point value. In contrast, the second invokes the single-parameter operator, which returns a pseudo-random integer less than or equal to i.



APPLICATION CLASS

class Employee

{
private:
string name;
int position;

int id;



Presenter
Presentation Notes
Functors, in general, and comparators, specifically, can operate on complex objects. The final example demonstrates a simple application working with instances of an Employee class, which has three data members. The video omits the constructor, getter, and inserter functions for brevity.



COMPARATOR CLASS |

class compByName

{
public:
bool operator()(const Employee& el, const Employee& e2) const
{
return el.getName() <= e2.getName();
}

s


Presenter
Presentation Notes
Comparators are generally simple classes that overload the function operator and return a Boolean value or a value the compiler can promote to a Boolean. Its two parameters are the objects that it compares, determining their relative order. This comparator extracts the employees’ names and compares them with one of the string’s relational operators. It returns true if the first name comes before the second (e.g., Alice and Wally) or if they are in alphabetical order (e.g., Alice and Alice).



COMPARATOR CLASS 2

class compByNumber

{
public:

bool operator()(const Employee& el, const Employee& e2) const

{
if (el.getPosition() == e2.getPosition())
return el.getID() <= e2.getID();
return el.getPosition() <= e2.getPosition();

s


Presenter
Presentation Notes
The second comparator is more complex, comparing objects based on a combination of data members: the employees’ positions in the company and their ID numbers. If an application uses this comparator to sort a list of employees, the final organization groups employees by their position and by their ID numbers within each group. An example later in the text demonstrates this process.



COMPARATORS AS FUNCTION
ARGUMENTS

cout << min(el, e2, compByNumber()) << endl;

cout << min(el, e2, compByName()) << endl;



Presenter
Presentation Notes
This example concludes with the C++ “min” function, demonstrating the syntax an application employs to use comparators. An advantage of using comparators is that an application can order objects in different ways at different times with different comparators.



	operator()
	Parentheses
	Overloading operator()
	The NPL�Pseudo Random Number Generator
	Using Functors
	Application class
	comparator class 1
	comparator class 2
	Comparators as function arguments

