
Person.cpp

Copy Constructor and Assignment Operator

Examples with C-Strings: Array and Pointer

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
For simplicity, the previous examples based on the Person class relied on an identification number to distinguish between two instances. However, most programs using a Person class expect the class to support the person’s name as a string. This video presents two versions of the Person class. Although each includes a C-string member variable for the name, one version defines the name as a character array, while the other defines it as a character pointer.
To keep the video manageable, the example only focuses on the copy constructor and copy operator. Students are encouraged to see the text for more detail.

Person CLASS
ARRAY VERSION

class Person
{
 private:
 char name[100] = "";
 int weight = 0;
 double height = 0;

 public:
 Person() {}
 Person(char* n, int w, double h) : weight(w), height(h) { strcpy(name, n); }
 Person(const Person& p);
 Person& operator=(Person& p);
};

Presenter Notes
Presentation Notes
The first version defines the person’s name as a character array with a fixed length of 100, sufficient to save a name with 99 characters plus the null termination character. While this length is likely sufficient for the class’s intended use, it also wastes considerable memory. The class specification initializes all data members, leaving nothing for the default constructor to do.
The class specification includes four functions, three constructors, and the overloaded assignment operator. Although the default constructor’s body is empty, it’s still necessary because the compiler doesn’t automatically create a default once programmers specify one or more parameterized constructors. The simple default illustrated here “gives client programs permission” to create an “empty” object, initialized with the values shown in the class specification.
It’s worth exploring the second constructor’s initializer list. The initialization of the “weight” and “height” members follows the syntax demonstrated numerous times since its introduction. However, the program can’t initialize the “name” member the same way. The first two initializer list elements behave like a “normal” (non-overloaded) assignment operation, which doesn’t copy C-strings. Therefore, the function’s body has one statement: a call to the strcpy function that copies the parameter “n” to the member “name.”

Person CLASS
POINTER VERSION

class Person
{
 private:
 char* name = nullptr;
 int weight = 0;
 double height = 0;
 public:
 Person() {}
 Person(char* n, int w, double h)
 : name(strcpy(new char[strlen(n)+1], n)), weight(w), height(h) {}
 Person(const Person& p);
 Person& operator=(Person& p);
};

Presenter Notes
Presentation Notes
The second version defines the person’s name as a character pointer. Memory to store the name is allocated dynamically on the heap. While the approach saves memory, it does so at the expense of more complicated operations and the potential for creating a memory leak. The class specification initializes the member variables, but a default constructor is still necessary. The “name” initializer may seem daunting, and while we can move it to the function’s body, breaking it into smaller statements, we can understand it by starting at its center and working outwards.

INITIALIZING A CHARACTER POINTER

• name(strcpy(new char[strlen(n) + 1], n))

• strlen(n) + 1

• new char[strlen(n) + 1]

• strcpy(new char[strlen(n) + 1], n)

• name(strcpy(new char[strlen(n) + 1]))

Presenter Notes
Presentation Notes
The “name” initializer is a large expression. Expressions are recursive structures, meaning that programs can form large expressions from small ones. We can understand the “name” initializer expression by examining the sub-expressions in evaluation order.
The strlen function counts the characters in “n,” one of the function’s parameters, and adds one, making room for the null termination character.
The “new” operator allocates memory on the heap for the C-string array and returns its address.
The strcpy function copies “n” to the newly allocated heap memory. As a convenience, strcpy returns a pointer to its first parameter, the heap memory in this expression, allowing the program to treat the function call as an expression.
The “name” initializer behaves like the non-overloaded assignment operator, assigning the address strcpy returns to “name.”

ARRAY VERSION

Person::Person(const Person& p)
{
 memcpy(this, &p, sizeof(Person));
 /*strcpy(name, p.name);
 weight = p.weight;
 height = p.height;*/
}

Person::Person(const Person& p)
{
 memcpy(this, &p, sizeof(Person));
 name = new char[strlen(p.name)+1];
 strcpy(name, p.name);
 //weight = p.weight;
 //height = p.height;
}

POINTER VERSION

THE COPY CONSTRUCTOR

Presenter Notes
Presentation Notes
The array version of the copy constructor is straightforward, following the pattern described previously. The function can copy the complete object with a single memcpy function call or member-by-member with individual assignment operations.
The pointer version is more complex and sensitive to the statement order than the array version. Nevertheless, we can still use the memcpy function or member-by-member copy with the pointer version. Either way, the statements allocating dynamic memory and copying “name” from the existing to the new object are necessary. Furthermore, if the constructor uses memcpy, it must call the function before allocating and copying “name;” otherwise, memcpy overwrites the just-saved address.

ARRAY VERSION

Person& Person::operator=(Person& p)
{
 if (this == &p)
 return *this;
 memcpy(this, &p, sizeof(Person));
 /*strcpy(name, p.name);
 weight = p.weight;
 height = p.height;*/
 return *this;
}

Person& Person::operator=(Person& p)
{
 if (this == &p)
 return *this;
 memcpy(this, &p, sizeof(Person));
 name = new char[strlen(p.name)+1];
 strcpy(name, p.name);
 //weight = p.weight;
 //height = p.height;
 return *this;
}

POINTER VERSION

THE ASSIGNMENT OPERATOR

Presenter Notes
Presentation Notes
The middle part of both assignment operator functions is the same as their corresponding copy constructors, simplifying their description. Assignment operators have two additional tasks, which are the same in both versions.
First, they must check for self-assignment, a statement attempting to assign an object to itself. If the function detects this situation, it returns early without performing any additional copy operations.
Assignment operators return a reference to their left-hand operand, the object bound to the function call, which allows chaining the operator. Member functions access their binding object with the “this” pointer, but the return value is not a pointer, so the function must dereference “this.”

COPY CONSTRUCTOR

• Person p1(…);

• Person p2(p1);

• Person p3 = p1;

• Person p1(…);

• Person p2;

• p2 = p1;

ASSIGNMENT OPERATOR

USING THE COPY OPERATIONS

Presenter Notes
Presentation Notes
Interestingly, how the “Person” class implements the “name” attribute doesn’t affect how client programs use it, demonstrating a significant object-oriented principle: classes should hide their implementation from client code. Hiding their implementation helps classes maintain a stable public interface.
Both examples begin by creating a “Persson” object, “p1,” using an appropriate constructor. It’s easy to see that the first copy operation calls the copy constructor. However, the second operation looks like it’s calling the assignment operator. However, it’s creating a new object and initializing it with data copied from an existing object, which is the task of a copy constructor.
The assignment operator demonstration breaks the second copy constructor example into two statements. The first statement creates a new “Person” object with the “empty” default constructor but initialized with the values stated in the class specification. The second statement copies an existing object, “p1,” to a second object, “p2.”

	Person.cpp
	Person class�Array version
	Person class�Pointer version
	Initializing a Character pointer
	The Copy Constructor
	The Assignment Operator
	Using the copy operations

