
ACTOR 4 EXAMPLE

Chaining Operators And Function Calls

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
This example is the fourth based on the Actor inheritance hierarchy but adds composition and aggregation. The example, as presented in the textbook, is extensive and detailed. For brevity, the video presents a simplified overview intended to prepare students to engage with the details in the text.

ACTOR 4 UML
CLASS DIAGRAM

• C++ implements

• Inheritance with superclass name and the
scope resolution operator

• Composition with a member name

• Aggregation with a member pointer

Address addr; Date* date;

Person::

Actor::

Presenter Notes
Presentation Notes
UML class diagrams summarize object-oriented programs’ static structure. The structure provides the paths along which objects send messages, cooperating to achieve a problem solution. The example’s core remains the central inheritance hierarchy that C++ implements with the superclass name and the scope resolution operator. This version of the Actor example adds composition, which C++ implements with an embedded object, and aggregation, implemented with a pointer.

ACTOR 4 UML
CLASS DIAGRAM

• Focus on syntax

• Constructor calls

• Member function calls

• I/O operators

• operator<< (extractor)

• operator>> (inserter)

Presenter Notes
Presentation Notes
The video omits many class details, allowing it to focus on the syntax necessary to chain the function calls moving data between objects. The example instantiates an object from the Star class, and a constructor chain passes data upwards through the diagram. The example saves data in a Date object with a setter function, so it’s not part of the constructor chain. A chain of display-function calls pulls the data down through the diagram. Extractor and inserter functions also move data through the diagram.

CONSTRUCTOR
CHAINING

• Date() {}

• Address() {}

• Person() {}

• Actor() {}

• Star() {}

• Address(string s, string c) : street(s), city(c) {}

• Person(string n, string s, string c)
 : name(n), addr(s, c), date(nullptr) {}

• Actor(string n, string a, string s, string c)
 : Person(n, s, c), agent(a) {}

• Star(string n, string a, double b, string s, string c)
 : Actor(n, a, s, c), balance(b) {}

Presenter Notes
Presentation Notes
Programs pass all data needed to initialize the objects related by inheritance and composition to the Star constructor, which uses one parameter to initialize the Star’s balance and passes the remaining parameters to the Actor constructor.
The Actor constructor keeps one parameter to initialize the Actor’s agent’s name and passes the rest to the Person constructor.
The Person constructor uses one parameter to initialize its name and passes two to the composed Address’s constructor. While it also sets the aggregating date pointer to null, C++ now allows programmers to do this in the class specification.
The example also includes a default constructor for each class. These constructors allow programs to create “empty” objects and initialize their members with the default values specified in the class specifications.

Person SETTER FUNCTIONS

void setDate(int y, int m, int d)
{
 if (date != nullptr)
 delete date;
 date = new Date(y, m, d);
}

void setDate(Date* d)
{
 if (date != nullptr)
 delete date;
 date = d;
}

Presenter Notes
Presentation Notes
Constructors initialize the classes related by inheritance and composition, but not aggregation. The Person class includes two setter functions to initialize its aggregated Date part. The first receives the Date information through its parameters and creates a new Date object. The second receives a Date object created elsewhere in the program. Both check for an existing Date and delete it before saving the new one. Whole classes with aggregated parts typically only include one setter, but as this example demonstrates, they may have more than one.

Actor

void display()
{
 Person::display();
 cout << agent << endl;
}

void display()
{
 Actor::display();
 cout << balance << endl;
}

Star

CHAINING FUNCTIONS WITH
INHERITANCE

• The display function is simple but illustrates the general member function
calling syntax

Presenter Notes
Presentation Notes
Recall that a Star is an Actor, and an Actor is a Person, implying that a Star object is simultaneously an Actor and a Person object. When a program instantiates a Star object, the constructors distribute the Star’s information over the three related objects. When it displays the Star’s information, the display functions gather it and display it on the console.
The display function is simple, having no parameters and a void return type. Nevertheless, it illustrates the C++ syntax chaining member function calls. Adding parameters or a non-void return type doesn’t change the basic calling syntax. The chain begins when the program instantiates a Star object, and the Star display function calls the Actor display. Each class in the inheritance hierarchy has a display function, so the calling syntax specifies the intended function with the superclass name, the scope resolution operator, and the function name.

Person display FUNCTION

• Composition uses the member variable’s
name and the dot operator

• Aggregation

• Should check for a null pointer

• Uses the pointer member’s name and the
arrow operator

void display()
{
 cout << name << endl;
 addr.display()
 if (date != nullptr)
 date->display();
}

Presenter Notes
Presentation Notes
The Person display function is the most complex. The Person class is at the top of the inheritance hierarchy, so it doesn’t call a superclass display function. However, it has two part classes, one connected by composition and one by aggregation, and it does call their display functions. C++ implements these relationships with member variables in the whole class.
C++ implements composition with an embedded object in the whole class and aggregation with a pointer. The example continues chaining the display function with the name of the implementing member variable, a selection operator, and the display function name. The member variable determines the correct selection operator: arrow for aggregation’s pointer and dot for composition’s non-pointer. Calling a function through a null pointer is a runtime error, so the function tests for this condition and skips the call if the pointer is null.

Star I /O
FUNCTIONS

friend ostream& operator<<(ostream& out, Star& me)
{
 out << (Actor &)me << me.balance << endl;
 return out;
}

friend istream& operator>>(istream& in, Star& me)
{
 in >> (Actor &)me;
 cout << "Balance: ";
 in >> me.balance;
 return in;
}

Presenter Notes
Presentation Notes
Chaining the inserter and extractor I/O functions in an inheritance hierarchy involves some unexpected casting operations. Recall that the C++ compiler selects overloaded functions based on their parameter lists, which require at least one unique parameter. The first inserter parameter is always an ostream, and the first extractor parameter is always an istream. The second parameter ties the functions to a specific class. Therefore, for a subclass I/O function to match its corresponding superclass function, it must match its parameter list by casting the subclass object to the superclass. A Star is an Actor by inheritance, so the conversion makes sense. The cast doesn’t change the object but forms an expression that matches the superclass function.

Actor I /O
FUNCTIONS

friend ostream& operator<<(ostream& out, Actor& me)
{
 out << (Person &)me << me.agent << endl;
 return out;
}

friend istream& operator>>(istream& in, Actor& me)
{
 in >> (Person &)me;
 cout << "Agent: ";
 getline(in, me.agent);
 return in;
}

Presenter Notes
Presentation Notes
Similarly, the Actor I/O functions must cast the Actor parameter to a Person to match the second parameter in the corresponding functions.

Person I /O
FUNCTIONS

friend ostream& operator<<(ostream& out, Person& me)
{
 out << me.name << " " << me.addr << endl;
 if (me.date != nullptr)
 out << *me.date << endl;
 return out;
}

friend istream& operator>>(istream& in, Person& me)
{
 cout << "Name: ";
 getline(in, me.name);
 in >> me.addr;
 Date* d = new Date;
 in >> *d;
 me.setDate(d);
 return in;
}

Presenter Notes
Presentation Notes
As with the display function, the Person I/O functions are more complex than the subclass versions because they chain twice, once to a composed part and once to an aggregated part. Composition is straightforward, using the variable name and dot operator, but aggregation is more involved than previous examples.
The inserter checks the aggregating variable for null, skipping the chaining function call if it is. C++ implements aggregation with a pointer, but none of the I/O functions have a pointer argument. So, the whole class I/O functions must dereference the aggregating pointers to match the part classes’ I/O function’s second parameter. Like the casting operation described previously, dereferencing doesn’t change the pointer but creates an expression that matches the second parameter.

INSTANTIATING OBJECTS
AND CALLING FUNCTIONS

Star s1("John Wayne",
 "Cranston Snort",
 50000000, "115 Elm",
 "Ogden");

s1.setDate(1960, 12, 25);
s1.display();
cout << s1 << endl;

Star* s4 = new Star;

cin >> *s4;
Date* d2 = new Date;
cin >> *d2;
s4->setDate(d2);
s4->display();
cout << *s4;

Presenter Notes
Presentation Notes
The driver appearing in the textbook presents four scenarios demonstrating function chaining in the Actor 4 example. For brevity, the video shows only two of these. The first scenario creates a Star object automatically on the stack. It fills the objects with information with a constructor chain and a setter function and prints the saved data with a chain of display function calls and extractor operators.
The last example, the fourth scenario in the text, creates a Star object dynamically on the heap. It fills the objects (Star, Actor, and Person) with data taken from the console by an extractor call chain and prints it with an inserter call chain.

	Actor 4 Example
	Actor 4 UML�Class Diagram
	Actor 4 UML�Class Diagram
	Constructor Chaining
	Person setter functions
	Chaining functions with Inheritance
	Person display function
	Star I/O functions
	Actor I/O functions
	Person I/O functions
	Instantiating objects�and calling functions

