ARRAY |:
AN operator|[] EXAMPLE

Overloading the index operator

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Arrays are structured objects that package multiple data elements in a single data unit. In this regard, they behave like zip files containing many individual files. Each array element is a variable whose type is the same as the array’s. The index operator allows programs to select individual variables or elements in the array.

AN ARRAY WITH SETTABLE BOUNDS

class Array

{
private:
int lower;
int uppers;

char* array;

public:
Array(int 1, int u);
~Array() { if (array != nullptr) delete[] array; }
char& operator[](int index);

s

Presenter Notes
Presentation Notes
Programmers can overload the index operator for any class with one or more array member variables. For example, we created three string classes in Chapter 9 to demonstrate problem-solving with pictures. An overloaded index operator is possible and appropriate for each class. We make an Array class as the context for the overloaded index operator example.
An Array object’s “special power” is optionally starting at an index value other than zero – it’s not zero-indexed! A program specifies the Array’s bounds - its lowest and highest valid index values - when instantiating it. The constructor and overloaded index operator are the two primary functions of interest. For simplicity, the class manages an array of characters (but lacking a null termination character, it isn’t a C-string); a later chapter generalizes the array, allowing it to manage any data type.

MEMORY ALLOCATION:
SIMPLE CASE

upper - lower + 1 Array a(@, 5);
5-0+1=6

0 1 2 3 4 5

0 1 2 3 4 5

Presenter Notes
Presentation Notes
Our first task is determining the array’s size and allocating its heap memory. A simple formula calculates the size based on the array’s bounds. We start with a simple, zero-indexed case and arbitrarily choose 5 as the upper bound. The program defines the Array object, calling the constructor. Plugging the boundary values into the formula and solving indicates the size of the array member is 6.
A picture helps us see the relationship between the lower and upper bounds and the array’s size. The top indexes show C++’s physical index values, while the bottom indexes are the class’s logical indexes. Both indexes are the same because this simple example is zero-indexed.

MEMORY ALLOCATION:
GENERAL CASE

Array b(5, 10); Array c(-3, 3);
10 - 5 +1 =6 3 --3+1-=7
0 1 2 3 4 5 0 1 2 3 4 5 b

> 6 7 8 9 10 -3 -2 -1 0 1 2 3

Presenter Notes
Presentation Notes
Two general examples demonstrate the size calculation and the relationship between the array’s logical and physical indexes. The first has a lower bound of 5, meaning that programs begin indexing the array at 5, and an upper bound of 10, the last valid index value. Plugging the bounds into the formula results in 6 as the array’s size. The top row is the physical C++ indexes beginning with 0. The values in the bottom row are the logical indexes. Client programs access the array elements with these, and the Array object maps them to the physical index values.
The second example is similar but has a negative lower bound. Recalling that subtracting a negative value is equivalent to adding a positive value, plugging the bounds into the formula produces a size of 7 elements. As before, the top row is C++’s physical indexes, and the bottom row is the Array object’s logical indexes.

THE Array CONSTRUCTOR

Array::Array(int 1, int u) : lower(l), upper(u)
{

if (upper < lower)
throw "upper must be >= lower";

array = new char[upper - lower + 1];

Presenter Notes
Presentation Notes
The constructor is the logical place to calculate the array’s size and allocate its memory. The function’s initializer list initializes the object’s “lower” and “upper” bounds with its parameters. Although it is also possible to initialize the “name” here, initializing it in the body is more efficient.
When a function throws an exception, it returns immediately, skipping the remaining function statements. Furthermore, allocating memory with “new” has some modest overhead. The branching test is true if the upper bound is less than the lower, causing it to throw an exception. If the constructor allocates the array memory in the initializer list, the branch must deallocate it before throwing the exception. If the branch runs but doesn’t deallocate the array memory, it causes a memory leak. The constructor is most efficient when it waits until it “knows” the object can use the memory before allocating it.

OVERLOADING THE INDEX OPERATOR

Let index be the parameter/operand char& Array::operator[](int index)
index - lower { . . .
. if (index < lower || index > upper)
array[index - lower] throw "index out of bounds";

return array[index - lower];

Presenter Notes
Presentation Notes
The preceding discussion set the stage for the main act: the overloaded index operator. The index operator is unary, having a single operand; alternatively, we can say the index function has a single parameter. The operator or function’s first task is mapping the “index” parameter – the array location the client program “wants” to access – to the physical array location C++ recognizes. The mapping is a function of the “index” parameter and the object’s “lower” bound. Any member function that needs to access an array element can use this expression. When the mapping is complete, the function uses it to index into the array.
For the reasons just described, the function validates the index parameter before mapping it to the physical index and returning the array element. The function’s “secret power” is that the client program can use the returned array element as an l- or r-value – the client can use it on the left or right side of the assignment operator.

DEMONSTRATING operator]]

Array c(-3, 3);

for (int 1 = -3; i <= 3; i++)
c[i] = char(i + 'D"); // 1l-value

for (int 1 = -3; i <= 3; i++)
cout << c[i] << endl; // r-value

Presenter Notes
Presentation Notes
An example illustrates how a client program creates an Array object and uses the overloaded index operator. The example fills the Array elements with characters and prints the characters to the console one at a time. Previous discussions relied on an assignment operator to distinguish between l- and r-values. Although the output statement doesn’t have an assignment operator as a reference point, the indexed array element forms an r-value. The Array’s lower and upper bounds correspond to the for-loops’ beginning and ending values. (Please note the less than or equal to operator.) Why does the first for-loop use the expression “i + ‘D’” when filling the array?

	Array 1:�An operator[] Example
	An array with settable bounds
	Memory Allocation:�Simple case
	Memory Allocation:�general case
	The Array Constructor
	Overloading the index operator
	Demonstrating operator[]

