
fraction VERSION 2

Overloaded Operators Version

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
The fraction class and its driver, a fraction calculator, authentically demonstrate many concepts described throughout the textbook. In particular, they demonstrate how a client program (the calculator) uses the services provided by a supplier (the fraction class). The fraction class also demonstrates overloaded operators implemented as friend functions.

CHAPTER 9 fraction CLASS

class fraction
{
 private:
 int numerator;
 int denominator;

 public:
 fraction(int n = 0, int d = 1);
 fraction add(fraction f2) const;
 fraction sub(fraction f2) const;
 fraction mult(fraction f2) const;
 fraction div(fraction f2) const;
 void print() const;
 void read();
};

Presenter Notes
Presentation Notes
The original Chapter 9 fraction class maintains a fraction as two member variables, numerator and denominator. Its public interface supports construction, four arithmetic, and two I/O functions.

THE fraction CLASS
SPECIFICATION

class fraction
{
 private:
 int numerator;
 int denominator;

 public:
 fraction(int n = 0, int d = 1);
 friend fraction operator+(fraction f1, fraction f2);
 friend fraction operator-(fraction f1, fraction f2);
 friend fraction operator*(fraction f1, fraction f2);
 friend fraction operator/(fraction f1, fraction f2);
 friend ostream& operator<<(ostream& out, fraction& f);
 friend istream& operator>>(istream& in, fraction& f);
 private:
 void reduce();
 int gcd(int, int);
};

Presenter Notes
Presentation Notes
The current version retains the same basic structure but makes some obvious changes. The most significant change is replacing the arithmetic and I/O functions with operators. Adding two private “helper” functions doesn’t represent new class functionality; instead, it groups statements into functions performing distinct tasks. The class specification prototypes the functions and operators but doesn’t define them. In this case, the default arguments and the “friend” keyword belong to the class specification and don’t appear with the definitions.

GREATEST COMMON DIVISOR
gcd

• Finds the greatest common divisor of
two integers

• gcd(8, 12) = 4

• gcd(8, 16) = 8

• Implemented with iteration or recursion

void fraction::reduce()
{
 int common = gcd(numerator, denominator);
 numerator /= common;
 denominator /= common;
}

reduce

HELPER FUNCTIONS

Presenter Notes
Presentation Notes
The greatest common divisor function, gcd, finds the largest integer that divides both parameters without leaving a remainder. So, given the numbers 8 and 12, 4 is the largest number dividing both evenly. Given 8 and 16, 8 divides both without leaving a remainder. We can implement the gcd function with iteration (loops) or recursion. The example uses iteration because it’s slightly more efficient.
The reduce function reduces a fraction to its lowest terms by dividing the numerator and denominator by their greatest common divisor. For example, the GCD for 8 and 12 is 4, so the fraction 8/12 reduces to 2/3; the GCD of 8 and 16 is 8, so 8/16 reduces to 1/2. The function doesn’t affect improper fractions like 3/2.

THE fraction CONSTRUCTOR

fraction::fraction(int n, int d)
 : numerator(n), denominator(d)
{
 reduce();
}

• fraction f;

• fraction f(5);

• fraction f(2, 3);

Presenter Notes
Presentation Notes
Although not included in the definition, the constructor’s parameters have default arguments. The defaults allow the constructor to function in three ways. Client programs can call the constructor without arguments, causing it to behave as a default constructor. Alternatively, they can call it with one argument, treating it as a conversion constructor, or they can call it with two arguments, so it operates as a general constructor.
The constructor initializes the numerator and denominator with an initializer list before statements in the body execute. The reduce function reduces the fraction to its lowest terms.

ADDITION AND SUBTRACTION

fraction operator+(fraction f1, fraction f2)
{
 int n = f1.numerator * f2.denominator +
 f2.numerator * f1.denominator;
 int d = f1.denominator * f2.denominator;

 return fraction(n, d);
}

Presenter Notes
Presentation Notes
The class implements the overloaded addition operator as a friend function, so clients pass both operands to it as explicit function arguments. The function calculates the numerator and denominator separately before passing them to the constructor. This approach leaves the original fraction arguments unchanged and allows the constructor to reduce the sum to its lowest terms. The overloaded subtraction operator works similarly but changes one addition operation to subtraction.

MULTIPLICATION AND DIVISION

fraction operator*(fraction f1, fraction f2)
{
 int n = f1.numerator * f2.numerator;
 int d = f1.denominator * f2.denominator;

 return fraction(n, d);
}

Presenter Notes
Presentation Notes
The overloaded multiplication operator follows the same pattern but changes how it calculates the numerator. The overloaded division operator is similar but follows the algorithm many learned in school, “invert and multiply,’ amounting to swapping the numerator and denominator of the right-hand operand or f2.

I/O OPERATORS

ostream& operator<<(ostream& out, fraction& f)
{
 cout << endl << f.numerator << "/" << f.denominator << endl;
 return out;
}

istream& operator>>(istream& in, fraction& f)
{
 cin >> f.numerator;
 cin >> f.denominator;
 f.reduce();
 return in;
}

Presenter Notes
Presentation Notes
The I/O operators follow the pattern described earlier in the chapter. Programmers may choose how to format their objects for output provided that the output is legible, meaningful, and serves its intended purpose. The extractor joins the constructor and arithmetic operators in calling the reduce function, reducing all fraction objects before returning them to the client.

EXCERPTS FROM A FRACTION
CALCULATOR

input(left, right);

void input(fraction& l, fraction& r)
{
 cout << "Left-hand fraction";
 cin >> l;
 cout << "Right-hand fraction";
 cin >> r;
}

fraction left;
fraction right;
fraction result;

result = left + right;
result = left - right;
result = left * right;
result = left / right;

cout << result << endl;

Presenter Notes
Presentation Notes
A fraction calculator, first introduced in Chapter 9 and modified here, is a client of the fraction class. The video excerpts a few relevant statements and a function from the calculator, which appears complete in the textbook.
The calculator creates three fraction objects and fills two with user input. The input function uses pass-by-reference to pass data back through its parameters. It provides the prompts and calls the overloaded fraction extractor, reading data from the console into the fraction objects.
The calculator loops until the user exits the program. During each loop, it prompts the user for an operation, reads fraction data, and performs the fraction operation. A switch statement in the loop interprets the user’s operation, demonstrating how a client uses the supplier’s overloaded operators.

	fraction Version 2
	Chapter 9 fraction class
	The fraction class specification
	Helper functions
	The fraction constructor
	Addition and subtraction
	Multiplication and division
	I/O operators
	Excerpts from a fraction calculator

