
TIME

Overloaded Operators Version

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
The textbook introduced the Time example to demonstrate structures and later converted it into a class. The final version converts the addition and I/O operations to overloaded functions. To illustrate a 2014 change to the ANSI C++ standard, it also makes a minor, non-substantive change by initializing the member variables in the class specification and correspondingly updating the default constructor.

UML TIME CLASS DIAGRAMS

Presenter Notes
Presentation Notes
Like the previous ones, the final version represents time as three integers, although it initializes them to zeros. The constructor prototypes remain unchanged, but the example modifies the default’s implementation. The only significant changes are to the addition and I/O operations.

C++ Time CLASS
#include <iostream>
using namespace std;

class Time
{
 private:
 int hours = 0;
 int minutes = 0;
 int seconds = 0;

 public:
 Time() {}
 Time(int h, int m, int s) : hours(h), minutes(m), seconds(s) {}
 Time(int s);
 Time operator+(Time t2);
 Time operator+(int i);
 friend ostream& operator<<(ostream& out, Time& t);
 friend istream& operator>>(istream& in, Time& t);
};

Presenter Notes
Presentation Notes
Initializing the member variables in the class specification allows us to simplify the default constructor. The constructor doesn’t appear to do anything; however, it allows clients to create Time objects without calling one of the parameterized constructors, and it supports polymorphism, which the next chapter covers.The Time class implements the overloaded addition operators as member functions and the I/O functions as friends. When the class prototypes but doesn’t define friend functions, the “friend” keyword appears in the class but not with the function definitions.

ADDING TIME

Time Time::operator+(Time t2)
{
 int i1 = hours * 3600 + minutes * 60 + seconds;
 int i2 = t2.hours * 3600 + t2.minutes * 60 + t2.seconds;

 return Time(i1 + i2);
}

Time Time::operator+(int i)
{
 int i1 = hours * 3600 + minutes * 60 + seconds;

 return Time(i1 + i);
}

Presenter Notes
Presentation Notes
The example implements the addition operator functions as members, meaning they are bound to an implicit argument object by the “this” pointer. Therefore, the members referenced without an explicit parameter belong to the implicit or “this” object. In contrast, programs access members belonging to explicit parameters with the parameter name and the dot operator. This version allows client programs to add two Time objects.Trivially, we can rewrite the second function in two different ways. We can move the final addition operation to the temporary variable calculation, which suggests a single-statement implementation that performs all the arithmetic in the “return” statement. This version allows clients to add an integer to a Time object, but the integer must be the right-hand operand.

Time I/O

ostream& operator<<(ostream& out, Time& t)
{
 out.fill('0');

 out << t.hours << ":"
 << setw(2) << t.minutes << ":"
 << setw(2) << t.seconds;

 out.fill(' ');

 return out;
}

istream& operator>>(istream& in, Time& t)
{
 cout << "Please enter the hours: ";
 cin >> t.hours;

 cout << "Please enter the minutes: ";
 cin >> t.minutes;

 cout << "Please enter the seconds: ";
 cin >> t.seconds;

 return in;
}

Presenter Notes
Presentation Notes
The overloaded inserter and extractor functions follow the basic patterns outlined earlier in the chapter. The inserter’s heart formats and prints the Time object’s data members. The “fill” and “setw” functions format the hours and minutes so they display as two digits with a leading zero when needed.The extractor prompts for and reads values into the hours, minutes, and seconds variables. This version is appropriate when reading input from the console, but we can remove the prompts for a more general solution.

A SINGLE friend FUNCTION

class Time
{
 private:

 public:
 Time(int s);
 friend Time operator+(Time t1, Time t2);
};

Time operator+(Time t1, Time t2)
{
 int i1 = t1.hours * 3600 + t1.minutes * 60 + t1.seconds;
 int i2 = t2.hours * 3600 + t2.minutes * 60 + t2.seconds;

 return Time(i1 + i2);
}

Presenter Notes
Presentation Notes
Version 2 of the Time problem replaces the member addition operators with a single friend operator. This function needs a conversion constructor, which the class already has, so the two-for-one modification reduces the class’s size. Clients pass both operands as explicit parameters, and the function accesses the data members through them.The friend function can accept three argument patterns. Time + Time directly matches the function’s parameters, calling the function without modifying either parameter. The function can also accept Time + an integer or an integer + Time. In the latter cases, the conversion constructor converts the integer to an instance of Time, allowing the addition operation to continue.

	Time
	UML Time Class diagrams
	C++ Time class
	Adding Time
	Time I/O
	A single friend function

