
INTRODUCTION TO 
POLYMORPHISM

Dynamically choosing which function to call

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Polymorphism is the final ingredient necessary to achieve object-orientation, and it is, put very simply, just a way of choosing which function to call when presented with a set of seemingly identical functions.




OBJECT-ORIENTED PARADIGM

• Encapsulation (Chap 9)

• Data and operations packaged together

• Inheritance (Chaps 10)

• Preeminent of five relationships

• The subclass inherits all the features of the superclass

• Polymorphism (Chap 12)

• Different objects respond to the same message differently

• Delayed function binding

Presenter Notes
Presentation Notes
The object-oriented paradigm requires three components. The first component is encapsulation, which is the packaging together of data and the operations that process that data. Encapsulation is equivalent to, or a synonym for, an object. Inheritance, the second component, is one of five relationships that join classes together. It is the preeminent relationship in the sense that many object-oriented features and processes depend on it. Subclasses inherit all the features of their superclass.
Polymorphism is the third and final component of the object-oriented paradigm, and it takes place when a carefully crafted set of circumstances are present. The necessary circumstances include at least two classes related by inheritance. The classes must have at least one identical function: the same name, the same argument list, and the same return type. Identical functions, defined in classes related by inheritance, are said to be overridden.
We have seen that the compiler can distinguish between overloaded functions based on the requirement that their argument lists are unique. But polymorphism requires identical, overridden functions. The compiler is unable to distinguish between polymorphic functions and so the program delays identifying which function to call until it is actually running. In computer science terms, the process of binding the function name to the appropriate function body is delayed until runtime.
Recalling that in object-oriented terms, sending a message to an object means calling one of an object’s functions, polymorphism is often described as different objects responding differently to the same message. This is much easier to see with an ongoing example.




DRAWING SHAPES, PART 1

class Circle
{

public:
void draw();

};

class Rectangle
{

public:
void draw();

};

class Triangle
{

public:
void draw();

};

Presenter Notes
Presentation Notes
Let’s begin with a problem and how we might solve that problem without polymorphism. Suppose that our task is to write a program that lets a user choose a shape from a list and draws that shape on the screen. We begin solving the problem by creating a set of classes to represent the possible shapes. To save time and space, we eliminate much of the detail from our classes and just focus on the fact that each class has a draw function. Notice that the functions have the same name, the same (empty) argument list, and the same (void) return type.




CHOOSING A SHAPE

cout << "C:\tCircle" << endl;
cout << "R:\tRectangle" << endl;
cout << "T:\tTriangle" << endl;

cout << "Please choose a shape: ";

char choice;
cin >> choice;
cin.ignore();

Circle* c;
Rectangle* r;
Triangle* t;

switch (choice)
{

case 'C' :
case 'c' :

c = new Circle(…);
break;

case 'R' :
case 'r' :

r = new Rectangle(…);
break;

case 'T' :
case 't' :

t = new Triangle(…);
break;

}

Presenter Notes
Presentation Notes
The code fragment illustrated here prints a simple menu of choices, prompts the user to choose a shape, defines three pointer variables, one for each possible shape, and then instantiates an object to represent the chosen shape.




DRAWING (USING) SHAPES

switch (choice)
{

case 'C' :
case 'c' :

c->draw();
break;

case 'R' :
case 'r' :

r->draw();
break;

case 'T' :
case 't' :

t->draw();
break;

}

• What happens when we add a new 
shape?

• Add a new pointer variable

• Create a new class

• Add a new case to instantiate an object

• Add a new case everywhere we need to 
draw the shapes

• Polymorphism provides a more elegant 
solution

Presenter Notes
Presentation Notes
Finally, we need to write the code that draws the shape. We use a switch statement to determine which shape the user chose and then draw the shape by calling the appropriate draw function. Note that this code represents how we use our shape objects. In a larger, more realistic program, this same block of code would be necessary whenever we needed to use one of our shape objects. This means that the switch statement could appear many times in many different locations – indeed, in many different files.
But what happens if the user wishes us to add a new shape, for example, an ellipse? First, we must specify a new class, which we do in one, new file. Second, we add a new item to the menu and a new case to the switch that allows the user to choose the new shape. But again, this change takes place in only one file.
The third step requires us to find everywhere in our program where we draw a shape, or, more realistically, where we use one of our objects, and to add a new case to the switch illustrated here. In a large program, spread over many files, the chances of failing to update a switch is quite large.




POLYMORPHISM REQUIREMENTS

• Inheritance

• Up casting

• A pointer or reference variable (polymorphism cannot operate through an 
automatic variable)

• Function overriding

• Virtual functions

Presenter Notes
Presentation Notes
Polymorphism can help solve this problem, and can ease the implementation of other complex selection problems. Polymorhism rests on 5 prerequisites:
Two or more classes related by inheritance
An instance of a subclass upcast to a superclass
The upcast must be done with pointers or references
Each class overrides the same function or functions
The overridden functions must be virtual
We explore each of these requirements in greater detail in the following sections.



	Introduction to Polymorphism
	Object-Oriented Paradigm
	Drawing Shapes, Part 1
	Choosing a Shape
	Drawing (Using) Shapes
	Polymorphism Requirements

