
SAFE CASTING

Upcasting is safe but downcasting is not

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Upcasting is always safe, but downcasting is dangerous. Whenever we do anything dangerous, there’s always a chance that something bad will happen. Sometimes downcasting doesn’t cause a problem but sometimes it does. We need to understand why.




CASTING CHOICES

Person

-name: string

Employee

-id : int

-height : double
-weight : int

-phone : string

Shape

Rectangle TriangleCircle

Presenter Notes
Presentation Notes
Given the simple inheritance on the left, we can create an Employee object and upcast it to a Person. If we use pointers or references, this operation will never cause a problem. Furthermore, if we later decide to downcast the Person, we only have one choice: we can downcast to an Employee, which does not cause a problem. It’s important to recognize that throughout all the casting that the pointers are all pointing to an Employee object and that the object itself never changes in any way.
Even when dealing with more complex inheritance as illustrated on the right, we still only have one choice when upcasting: We can upcast a Circle to a Shape, a Rectangle to a Shape, or a Triangle to a Shape. But now we have three choices when we downcast. If we upcast a Circle to a Shape and then downcast it back to a Circle, the casts don’t cause a problem. But if we cast a Circle to a Shape and then downcast it to a Rectangle, we set the stage for some severe data corruption.




THE SYMBOL TABLE

Person

-name: string

Employee

-id : int

-height : double
-weight : int

-phone : string

Person

Superclass: nullptr

name type

name string
height double
weight int

Employee

Superclass: Person

name type

id int
phone string

name

height

weight

id

phone

Em
pl

oy
ee

 O
bj

ec
t

Presenter Notes
Presentation Notes
To help us better understand the possible data corruption that can take place with a series of bad casts, we need to understand how the compiler generates code and how objects are created in memory. When the compiler processes the C++ code that corresponds to the UML class diagram illustrated here, it places the class names, along with information about each class’s members, in the symbol table.
Recall from previous discussions that when the compiler uses the symbol table to generate code, that it enters the symbol table based on the type of the pointer variable. Also recall that inheritance is unidirectional, from the subclass or child to the superclass or parent. If the compiler enters the symbol table at the Employee entry, it can find information about both classes, but if it enters at the Person entry, it can only locate information about the superclass or Person.




PERSON* CEO = NEW EMPLOYEE(.. .) ;

name

height

weight

id

phone

ceo

name

height

weight

cto

EMPLOYEE* CTO = (EMPLOYEE *)NEW PERSON(.. .) ;

DOWNCASTING VS UPCASTING

Presenter Notes
Presentation Notes
If we make an instance of Employee but upcast it to a Person, the object still has the Employee member variables id and phone, but the members are unreachable through a Person pointer.
Now, consider what happens if we make an instance of Person and downcast it to an Employee. While using the symbol table to generate code, the compiler enters the table at the Employee entry, where it finds information about both the Person and the Employee classes. But the object is a Person – there are no Employee member variables contained in the object. Any attempt to access id or phone will return the random bits appearing in the memory lying beyond the Person object.




INCORRECT DOWNCASTING

Shape

Rectangle

-height :int

TriangleCircle

-radius : int -width :int

• Shape* s = new Circle(…);

• Rectangle* r = (Rectangle *)s;

• Data misinterpretation

• radius becomes width

• height is undefined

• Different data types have different sizes 

• Polymorphism reduces the need to 
downcast

Presenter Notes
Presentation Notes
Casting a Circle to a Shape and then back to a Circle doesn’t cause a problem. But what happens if we create a Circle, cast it to a Shape, but then downcast it to a Rectangle?
When generating code, the compiler begins searching the symbol table at the Rectangle entry, where it finds two integers: width and height. The memory location accessed by the member variable width is the same location where the radius was stored in the original Circle object, so what was meant as the radius of circle is now interpreted as the width of a rectangle. Furthermore, the member variable height lies outside of the original Circle object and so is just random, meaningless bits. If the original class and the downcast class had different data types, which are different sizes and therefore begin and end at different locations, the data corruption would be even worse.
Polymorphism reduces the need to downcast by allowing each object to use its own data in a logical and consistent way.




SLICING: UPCASTING WITH VALUES

Em
pl

oy
ee Pe

rs
on

Employee e(…); Person p; p = e;

Presenter Notes
Presentation Notes
Up to this point, the discussion and the examples have all been based on pointers. What happens if we try upcasting with value variables – that is, not pointers? When we upcast an object using pointers, we don’t alter the object in any way, we just change how the compiler accesses the object’s members. Alternatively, when we perform a cast with an object, rather than a pointer to an object, the cast object is copied and the copy is indeed changed.
First, recall that when we assign one object to another that the assignment operator performs a bitwise copy of the right-hand argument to the left-hand argument. That is, the entire object is copied, not just its address. This example proceeds in three steps and demonstrates the impact that the copy operation has on an upcast.
First, an Employee is instantiated. The new object consists of a Person sub-object, colored blue, and a part that is unique to Employee, which is colored green. Together, these two parts make a complete Employee object.
Next, a Person object is instantiated. Overall, a Person object has fewer member variables than does an Employee object, so the amount of memory allocated for a Person object is less than the amount of memory allocated for an Employee. Or, simply put, a Person is smaller than an Employee.
In the final step, the Employee object is upcast and assigned to the Person object. This operation copies the Employee to the Person, but the Person object doesn’t have enough memory to hold an entire Employee object. So, the part of the Employee that doesn’t fit, which is exactly the part that’s not a Person, is sliced off. The original Employee object, e in this example, is not modified, but the Person object, p, only contains the Person part of object e.



	Safe Casting
	Casting Choices
	The Symbol Table
	Downcasting vs Upcasting
	Incorrect Downcasting
	Slicing: Upcasting With Values

