
CASTING OBJECTS

Changing data types

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
A cast operation changes a value from one data type to another. For example, from an integer into a double. Some casts take place automatically, while other casts require a programmer to explicitly perform the cast. Some kinds of type conversions cannot be done with a type cast: For example, converting numbers to strings or converting strings to numbers. With this section of the text, we begin our exploration of casting as it applies to objects.




CASTING:
OPERATOR AND EXPRESSIONS

• Casting is done with an operator: (type)exp or type(exp)

• The cast operator forms an expression

• Casting does not change the original value

• Example:

• double pi = 3.14159;

• int i = (int)pi;

• int i = int(pi);

• The value stored in pi is unchanged

• The value stored in i is 3

Presenter Notes
Presentation Notes
C++ supports two kinds of casting notation: The casting operator is formed by a set of parentheses that enclose the destination or target data type. The casting operator is placed immediately before the expression whose type is being changed. The casting function is formed by the target type, appearing as a function name, with the cast expression in parentheses.
Recall that an expression can be a constant, a variable, a function call, or to any of these combined with appropriate operators. The result of a cast is a new expression that doesn’t alter the original expression.
For example, the variable “pi” is an expression. The parentheses enclosing the type “int” forms a casting operator, which can be applied to the variable or expression “pi.” The type “int” can also be used as a casting function with the variable “pi” enclosed in parentheses. In either case, the result is a new value, 3 in this example, that is stored in the variable “i.” The value stored in “pi” is unchanged.




CASTING OBJECTS

• Casting objects is only possible when the 
objects are instances of classes related by 
inheritance

• A Circle “is a” Shape

• A Student “is a” Person

• Does it make sense to cast a Student 
into a Shape?

friend ostream& operator<<(ostream& out, Student& me)
{

out << (Person &)me << " " << me.gpa;
return out;

}

Presenter Notes
Presentation Notes
In the case of objects, simple casting is only possible when the objects are instances of classes related by inheritance. By simple casting, I mean casting that uses the built-in casting operator or function just described and doesn’t involve overloading either, which are capable of more complex data transformations.
For example, a Circle is a Shape, so casting or converting a Circle object into a Shape makes some sense. Or, A Student is a Person, so, again, converting a Student object into a Person seems like a reasonable thing to do. Alternatively, it doesn’t make as much sense to convert a Student into a Shape.
We’ve used casting before to temporarily change the type of an object so that it matches an argument in a function call. In this overloaded inserter function, a Student is changed into a Person so that the right-hand argument matches the second argument in the overloaded inserter function defined in the Person class.




UPCASTING

• Upcasting takes place when a subclass 
object is converted into a superclass 
object

• Upcasts are safe and take place 
automatically without casting notation:

• Circle* c = new Circle;

• Shape* s = c;

Shape

Rectangle TriangleCircle

Presenter Notes
Presentation Notes
Upcasting is so named because it is changing a data type (which is the casting part) upwards in an inheritance hierarchy. Upcasting is safe and takes places without the need for explicit casting notation. In this example, an instance of Circle is cast or converted into a Shape. Downcasting takes place in the opposite direction, that is, the conversion goes downward in the inheritance hierarchy; for example, converting a Shape to a Circle.
Notice that when we perform an upcast that we only have one choice; for example, a Circle to a Shape. But when we downcast we generally have many choices. Given a Shape, it could be downcast to a Circle, to a Rectangle, or to a Triangle. This is one reason that downcasting is more difficult than is upcasting.




A

B

C

D

CASTING OPTIONS

Presenter Notes
Presentation Notes
Whenever an inheritance hierarchy has multiple levels of inheritance, casting may take place between any two classes. For example, when upcasting, class D may be upcast to class C, Class B, or Class A; class C may be upcast to class B or class A; and class B may be upcast to class A. When downcasting, class A may be downcast to class B, class C, or class D; class B may be downcast to class C or class D; and class C may be downcast to class D.




DOWNCASTING

• Downcasting may cause a loss of 
precision and requires an explicit 
downcast

• Example:

• double pi = 3.14159;

• int i = (int)pi;

• What are the consequences of 
downcasting objects?

• Example 1
• Circle* c = new Circle;

• Shape* s = c;

• Circle* c2 = (Circle *)s;

• Example 2
• Shape* s = new Shape;

• Circle* c = (Circle *)s;

Presenter Notes
Presentation Notes
Downcasting is potentially dangerous and so requires a programmer to explicitly perform the cast operation.
The double data type is said to be wider than the int data type because it can store a wider range of values than can an int. It’s possible to lose data or information when converting from a double to an int. In the past, this potential loss of precision forced programmers to explicitly use the cast operator to acknowledge the risk, but newer versions of C++ have relaxed that requirement. In this example, converting from a double to an int loses the fractional value of .14159.
Similarly, upcasting an object is safe and therefore automatic, but downcasting an object is potentially dangerous and therefore requires an explicit downcast operation. Without explaining why we might want to do this, the casting sequence in example 1 begins with a Circle and then automatically converts or casts it to a Shape, and then casts it back to a Circle, which does not cause a problem. Example 2 begins with a Shape and converts it to a Circle. This operation can cause problems! The following sections attempt to explain why this downcast is problematic, which is a step toward understanding why we may need to do it anyway.



	casting Objects
	Casting:�Operator and Expressions
	Casting Objects
	Upcasting
	Casting Options
	Downcasting

