
IMPLEMENTING POLYMORPHISM

Dynamic, Runtime, or Late Binding

Dynamic Dispatch

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Viewing polymorphism as function binding or connecting a function call in a program to the instructions compiled from the function’s body, is the easiest way to understand it. For non-polymorphic functions, the compiler component and the linker can complete the binding at compile time. But the compiler system can’t complete polymorphic function binding at compile time. So, the program binds the function call to the correct function at run time when it calls the function. This section explores how C++ implements and calls polymorphic functions.

NON-POLYMORPHIC
FUNCTION CALLS

1. Saves the return address

• the program counter

2. Passes arguments to parameters

3. Jumps to the function’s entry point

• sets the program counter

4. Executes the function’s instructions

5. Returns to the address following the call

• sets the program counter

f(a,b)

f(c,d)

f(x,y)
x

y

Presenter Notes
Presentation Notes
Before exploring polymorphic functions, let’s review how a program runs non-polymorphic functions. Modern computers have a hardware register called the program counter, which stores the next instruction that the computer will execute. Whenever a computer reads an instruction, it automatically advances the value in the program counter to the next instruction. When a program processes a function call, the computer performs five specific operations: First, it saves the current address in the program counter as the return address; second, it passes the arguments in the function call to the parameters in the function header; third, it jumps to the function by storing the function’s address in the program counter; fourth, it executes the function’s instructions; and last, it returns to the address following the function call by storing the return address in the program counter. Amazingly, the compiler can generate the instructions to do all this at compile time.

INHERITANCE AND OBJECTS

A

B

C

D

A

B

C

D

Presenter Notes
Presentation Notes
When programs instantiate objects from classes with a superclass, they also instantiate objects from the superclass. In this example, the program instantiates an object from class D, creating objects from classes C through A. Each superclass object is nested inside the subclass object. So, the object created from class D consists of successively nested objects. Although the superclass objects are nested inside subclass objects, they are nevertheless objects, and the program must initialize or construct them.

INHERITANCE AND CONSTRUCTORS

class D : public C

{

void D(…) : C(…)

{

. . . .

}

}

A

B

C

D

class A
{
 A(...)
 {
 }
}

class B : public A
{
 B(...) : A(...)
 {
 }
}

class C : public B
{
 C(...) : B(...)
 {
 }
}

class D : public C
{
 D(...) : C(...)
 {
 }
}

Presenter Notes
Presentation Notes
Constructor functions are responsible for initializing or constructing new objects. When a subclass constructor runs, its first operation calls its superclass constructor. The instructions in the constructor’s body run only after the superclass constructor returns. The constructor calls climb to the top of the inheritance hierarchy. Once the calls reach the top, the constructor bodies execute down to the constructor of the instantiated class.

SHAPE HIERARCHY
Shape

+draw() : void

Rectangle

+draw() : void

Triangle

+draw() : void

Circle

+draw() : void
+erase() : void +erase() : void +erase() : void

+erase() : void
• Features needed for polymorphism

• Inheritance

• Function override

• virtual function

Presenter Notes
Presentation Notes
To better help us understand how C++ implements polymorphism, let’s expand on the Shape example. The UML class diagram clearly shows inheritance and function overriding. Unfortunately, the UML doesn’t have a notation to convey that the draw and erase functions are “virtual.” Nevertheless, we’ll assume they are virtual to further the example. With that assumption, the Shape classes provide three of the five features needed for polymorphism.

CLIENT CODE

Shape* s = new Circle;

.

.

.

c->draw();

• Features needed for polymorphism

• A pointer variable

• an up-cast

Presenter Notes
Presentation Notes
The client code, code that uses the Shape classes, provides the last two features necessary for polymorphism: a pointer variable and an up-cast. We know from previous discussions that the draw function called is the one belonging to the Circle class. So, how does the program select the Circle draw function and not the Shape or Rectangle draw function?

IMPLEMENTING
POLYMORPHISM

vptr

vptr

vptr

vptr

Shape::draw

Shape::erase

Circle::draw

Circle::erase

Rectangle::draw

Rectangle::erase

Triangle::draw

Triangle::erase

Shape

Circle

Rectangle

Triangle

Objects Vtables

• When a class has virtual functions

• The class has a virtual table

• The table is a list of function pointers

• Instances of the class have a virtual pointer

• Running a polymorphic function

• Retrieves the address in the virtual pointer

• Follow it to the class’s virtual table

• Search for the function by name

• Run or dispatch the function

Presenter Notes
Presentation Notes
The compiler creates a virtual table for every class that has virtual functions. The virtual table is a list of function pointers, one for each virtual function in the class.
The compiler adds a virtual pointer to every object instantiated from a class with virtual functions. Each constructor saves the address of its class’s virtual table in the object’s virtual pointer. When the program instantiates a Circle object, the Circle constructor calls the Shape constructor, which stores the address of the Shape’s virtual table in the object’s virtual pointer. Then the Circle constructor runs and stores the address of the Circle’s table in the virtual pointer. For taller hierarchies, the constructors run from top to bottom but the last one that runs stores the final address in the object’s virtual pointer.
The following operations occur when all five polymorphism requirements are satisfied, and the program calls a polymorphic function:
The program retrieves the address in the virtual pointer,
follows the pointer to the class’s virtual table,
searches the virtual table for a function with the correct name, and
uses the stored address to run the function.

	Implementing Polymorphism
	non-polymorphic Function calls
	inheritance and objects
	Inheritance and Constructors
	shape hierarchy
	Client Code
	Implementing polymorphism

