
ACTOR 5

A Polymorphism Example

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Polymorphism is most beneficial in large, complex programs that are beyond the scope of an introductory programming course. Therefore, the focus of the fifth version of the Actor example is on how to recognize and use polymorphism. While it doesn't provide a robust example demonstrating polymorphism's power, it nevertheless ends by suggesting some possible uses.

POLYMORPHISM REQUIREMENTS

• Inheritance

• Function overriding

• A pointer or reference variable

• Upcasting

• One or more virtual functions

Presenter Notes
Presentation Notes
Our first goal is to recognize when a program exhibits polymorphic behavior and when it doesn't. While it's necessary to know the five polymorphism requirements, it's also crucial to be able to identify them in a working program. Knowing where programs generally fulfill each requirement aids our ability to recognize them.

CLASS ARCHITECTURE

• Person* s2 = new Star(...);

• function(Person* new(star(…));

CLIENT

SATISFYING POLYMORPHISM
REQUIREMENTS

Presenter Notes
Presentation Notes
The class structure or architecture satisfies inheritance, function overriding, and virtual functions. UML class diagrams show inheritance and function overriding but lack a notation indicating virtual functions. Programmers can implement these features directly as part of an application program or implement the program as a client and supplier, with the supplier providing the class architecture. The class structure must reflect the original problem. If the original problem doesn't have features matching inheritance or function overriding, it won't benefit from polymorphism.
The application or client part of a program typically provides the pointer or reference variable and the upcasting operation. C++ can only implement polymorphism with pointer or reference variables, and, for simplicity, we have restricted our discussion to pointers. Furthermore, polymorphism also requires an upcast operation. We can easily see an upcast when programs do it with an assignment, but they generally do it by calling a function and passing a subclass object to a superclass pointer.

virtual : THE FINAL REQUIREMENT

virtual void display()
{
 cout << name << endl;
 addr.display();
 if (date != nullptr)
 date->display();
}

Presenter Notes
Presentation Notes
After a program satisfies the first four requirements, specifying an overridden function as "virtual" fully enables polymorphism. Programmers typically make the function at the top of an inheritance hierarchy virtual, but they can enable polymorphism at any level. Making a function virtual automatically makes all the overridden functions in the subclasses virtual, so using the "virtual" keyword in the subclasses is optional.
For example, we can make the Person display function virtual, automatically making the Actor and Star display functions virtual. Although less common, we could make the Actor display function virtual, making the Star display virtual but leaving the Person display non-virtual. For clarity, I prefer using the "virtual" keyword with all virtual functions.

POLYMORPHIC VS. NON-POLYMORPHIC
BEHAVIOR

int main()
{
 Person* s2 =
 new Star("John Wayne", "Cranston Snort", 50000000,
 "123 Palm Springs", "California");

 s2->setDate(1960, 12, 25);
 s2->display();
 cout << endl;
 cout << *s2 << endl;

 return 0;
}

Presenter Notes
Presentation Notes
A simplified client program defines a pointer variable and instantiates a Star object. Through inheritance, a Star is simultaneously an Actor and a Person, and its constructor chains to the other constructors, distributing the data among the three objects. The program upcasts the Star object to a Person and then makes polymorphic and non-polymorphic function calls. Although s2 is a Person pointer, using polymorphism, the program calls the Star display function, printing all the Star's data. However, the non-polymorphic call goes directly to the Person display function, which only prints the data saved in the Person sub-object.

AN EXTENDED
POLYMORPHISM

EXAMPLE

CList people;

Star* s = new Star(...);
people.insert(s);

Actor* a = new Actor(...);
people.insert(a);

Person* p = new Person(...);
people.insert(p);

people.list();

Presenter Notes
Presentation Notes
Although still contrived, we can form an example that better demonstrates polymorphism's usefulness. In object-oriented programming, a data structure is an object storing and organizing data, often in the form of other objects. A linked list, implemented in many ways, is a basic example. It consists of a sequence of nodes, each containing data or objects and linked to the next node with a pointer.
A circularly-linked list, named CList in this example, is a list whose public interface supports construction, insertion, and listing. The list function visits each node in order, listing or printing the saved data. This version only stores Person objects, organizing them alphabetically by name. The program creates Star, Actor, and Person objects, inserting each into the list. However, the list organizes them alphabetically, potentially changing their order in the list. Nevertheless, polymorphism calls the correct display function based on the object's class type when the list function calls each object's display function.

	Actor 5
	Polymorphism Requirements
	Satisfying Polymorphism Requirements
	virtual: the final requirement
	Polymorphic vs. non-polymorphic�Behavior
	An extended polymorphism example

