
TEMPLATE FUNCTIONS

Creating functions operating on general data types

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Well-formed functions perform a single task. Parameterizing them separates the operations from their data, typically supplied by a client or application program. Templates further generalize functions by divorcing the data from a specific type.

GENERALIZED DATA TYPES

//template <class T>
template <typename T>
void swap(T& x, T& y)
{

T temp = x;
x = y;
y = temp;

}

double data[1000];
 . . .
swap(data[i], data[j]);

Person people = new Person[100];
 . . .
swap(people[x], people[y]);

Presenter Notes
Presentation Notes
The swap function demonstrates the template syntax and how it benefits some functions. The first line activates the templating mechanism and introduces the template variable. Initially, C++ only recognized the “class” keyword in the template statement but now also accepts “typename.” The template variable, T, replaces the data type name throughout the function definition, allowing the swap function to operate with all data types supporting the assignment operation. Programmers may choose any appropriate variable name, but T is traditional.
Calling a template function from an application program looks like any other function call. In this example, the compiler deduces the data types “double” and “Person” from the calls’ arguments, making one instance of the swap function for each type: one capable of swapping doubles and another for swapping Person objects.

PROCESSING TEMPLATE FUNCTIONS

• Library programmers put template functions in header files

• Application programs #include the header

• The preprocessor copies the header to the application

• The compiler deduces the arguments’ type from their definition in the function

• The compiler replaces the template variable with the deduced type, making
one instance of the function for each type replacement

• The compiler translates the function to machine code after the replacement

Presenter Notes
Presentation Notes
Although the calling syntax for template and non-template functions is the same, their organization and the way the C++ compiler system processes them are very different:
Unlike “normal” functions, application programmers put template functions in header files.
Application programs #include the header file.
The preprocessor copies the C++ source code from the header to the application program file.
The compiler deduces the argument’s type from their definition in the function.
The compiler expands or replaces the template variable with the deduced data type, making one instance or copy of the function for each deduced data type.
Only after the preprocessor copies the function into the application, deduces the type, and replaces the template variable with the type can the compiler translate the function into machine code.
One observation clarifies template organization and processing: The compiler must “see” how the application program defines the data passed to the function’s parameters to deduce its type, and it can only “see” the definition in the function’s source code.

STANDARD TEMPLATE LIBRARY (STL)
<algorithm>

#include <iostream>
#include <algorithm>
using namespace std;

int main()
{
 int x = 20;
 int y = 10;
 cout << min(x, y) << endl;

 return 0;
}

template <class T>
const T& min(const T& a, const T& b)
{
 return (a < b) ? a : b;
}

Presenter Notes
Presentation Notes
C++ provides a rich set of template functions and classes collectively called the “Standard Template Library” or STL. There are too many library components to examine in detail, so we take one function, min, from the <algorithm> header file as a representative example. The min function orders its two parameters (i.e., determines which one comes first) and returns the smallest. The fundamental types are naturally orderable – 5 is naturally less than 10. Making min a template function allows it to work with integers, doubles, and the rest of the fundamental types.
An application program uses min by including the <algorithm> header file and calling the function. The compiler determines the data type to replace the template variable, T, from the function arguments. However, objects are typically more complex than the fundamental types and may lack a “natural” ordering, or the order may be unclear.

ESTABLISHING A
“NATURAL” ORDERING

friend bool operator<(const Employee& e1, const Employee& e2)
{
 return e1.name < e2.name;
}

Employee e1("Dilbert", 123);
Employee e2("Alice", 987);
Employee e3 = min(e1, e2);

Presenter Notes
Presentation Notes
To illustrate the challenge of ordering objects, imagine an application program with a class named Employee. The class has two attributes: a name and an identification number. It seems “natural” to order two Employee objects alphabetically by their names, but this is not an intrinsic or automatic operation like it is with the fundamental types. However, a class programmer can make it automatic by overloading the “less than” operator for the Employee class.
The overloaded Employee operator extracts the name from each parameter and uses the overloaded string operator to complete the comparison. The min template function requires the ordering function to return a Boolean value or one it can unambiguously convert to a Boolean. The string operator returns a Boolean value, which the Employee operator passes along, satisfying the min function’s ordering requirement. Given the illustrated overloaded operator, the min function works seamlessly with Employee objects.

ORDERING WITH A COMPARATOR

• A comparator implements a programmer-specified ordering

• Comparators can be passed as function pointers

• Comparators can be passed as objects overloading operator<

template <class T, class Compare>
const T& min(const T& a, const T& b, Compare comp)
{
 return comp(a, b) ? a : b;
}

Presenter Notes
Presentation Notes
Implementing object ordering by overloading the “less than” operator is insufficient in two situations. The first is when a class doesn’t have an overloaded operator, and the application programmers don’t “own” the class, implying they can’t add the operator. The second is when the application needs to order objects in multiple ways at different times. For example, sometimes the application must order Employee objects by name and other times by id number. A second STL min function solves this problem with a third parameter called a comparator, denoting its type with a second template variable called “Compare.”
The STL functions support two kinds of comparators: a function comparing two template objects and returning a Boolean value based on a programmer-specified ordering or an instance of a class defining such a function. In this example, one comparator can order Employee objects by name, while another orders them by id number. STL functions pass function comparators as pointers and comparator objects by reference.

COMPARATOR FUNCTION POINTERS

friend bool comp1(const Employee& e1, const Employee& e2)
 { return e1.name < e2.name; }
friend bool comp2(const Employee& e1, const Employee& e2)
 { return e1.id < e2.id; }

Employee e1("Dilbert", 123);
Employee e2("Alice", 987);
Employee e3 = min(e1, e2, comp1);
Employee e4 = min(e1, e2, comp2);

Presenter Notes
Presentation Notes
Creating and using comparator functions is straightforward – the hard part is the declaration syntax, which the template library handles. This example assumes that the Employee class defines the comparator functions or that the application programmers can add them. Rather than directly accessing a class’s private member variables, programmers can implement comparator functions in the application as non-friend functions using a class’s getter functions. Applications can’t use this technique if the class doesn’t define the comparators or getter functions.

MULTIPLE, FLEXIBLE ORDERINGS:
COMPARATOR OBJECTS

class CompareName
{
 public:
 bool operator() (const Employee& e1, const Employee& e2)
 { return e1.getName() < e2.getName(); }
};

CompareName c1;
Employee e1("Dilbert", 123);
Employee e2("Alice", 987);
Employee e3 = min(e1, e2, c1);

Presenter Notes
Presentation Notes
Implementing a comparator object is straightforward, assuming that the ordered objects provide appropriate getter functions. Comparator objects override the “function call” operator, formed by a pair of parentheses. Objects overloading this operator are often called “functors.” Once an application specifies a comparator class and instantiates an object from it, using the comparator object is easy: the object becomes the third min function argument.

	Template Functions
	Generalized Data Types
	Processing template functions
	Standard Template Library (STL)�<algorithm>
	Establishing a “natural” ordering
	Ordering with a Comparator
	Comparator function pointers
	Multiple, flexible orderings:�comparator objects

