
BINARY TREES:
TEMPLATE EXAMPLES

Overview

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Binary trees are fast, efficient dynamic data structures consisting of nodes connected with pointers. Client programs often create the initial binary tree node, called the root, on the stack, but the tree algorithms typically create the subsequent nodes dynamically on the heap. Each node stores one data item. When implemented with templates, the data can be a simple byte or an arbitrarily complex object.

BINARY TREES

D

B F

A C E G

• Create

• Destroy

• Insert

• Search

• Remove

Presenter
Presentation Notes
The name “binary tree” derives from the structure’s organization. Each node has two pointers linking the nodes into a tree-like structure. Unlike arborists, computer scientists call the top node the root, and each branch points to a subtree. The data in the left subtree “comes before” the data in the root, while the data in the right subtree “comes after.” The tree’s behavior in the case of equal values is implementation-dependent. Each subtree follows the same organizational pattern.
Binary trees may support numerous operations, but five are common. Constructors and destructors implement the creation and destruction operations. If the tree remains well-balanced, the insert and search operations are relatively fast; degenerate trees, more linear than tree-like, are slow. The removal operation is complex and relatively slower.

IMPLEMENTING BINARY TREES

template <class T>
class Tree
{
 private:
 T data;
 Tree<T>* left;
 Tree<T>* right;
 . . .
};

Presenter
Presentation Notes
A binary tree node with a single template variable provides sufficient context to describe the tree operations. Subsequent sections present complete implementations based on one and two template variables. Programmers can implement binary trees in many ways. The trees described here use an “empty” root node – a node that doesn’t store data – that the client creates, forming the “handle” it “holds” to use the tree. The tree functions allocate the remaining nodes on the heap as needed. The algorithms use two pointers, “top” and “bottom,” to descend the tree, keeping them one level apart.

DESCENDING THE TREE

root

Presenter
Presentation Notes
We can characterize three functions, search, insert, and remove, as tree traversal functions. The functions traverse or descend the tree by moving the top and bottom pointers downward in the tree. They begin by initializing top to root and bottom to root’s right subtree. They descend the tree by moving the top pointer down to the bottom and choosing one of the bottom’s subtrees. They choose by comparing their argument, named key, to the data stored in the bottom node. They choose the left subtree if the key data is less than the bottom’s data; otherwise, they choose the right subtree. Each choice halves the amount of data the function must consider, making the descent a fast operation. The descent continues until key matches a tree node or bottom becomes null.

REMOVE (1)

• Slower than search or insert

• Three cases:

• No subtrees (is a leaf)

• One subtree

• Two subtrees

• Case 1: No subtrees

• Destroy the node

• Set the appropriate top subtree pointer to
null

A

λ
B

λ
bottom

top
λ

A
top

Presenter
Presentation Notes
Locating a node to remove from the tree is relatively fast and simple. However, removing it from the tree is slower and more complex. Decomposing the removal operation into three cases based on the removal node’s subtrees simplifies the overall operation. We characterize the node as having no subtrees, making it a leaf, or having one or two subtrees.
The function detects a leaf when the bottom’s left and right subtrees are null. The function destroys or deletes the node and sets the appropriate top subtree to null. Empty subtree boxes don’t affect the algorithm, so they may be null or point to a subtree.

REMOVE (2)

• Case 2: One subtree

• Set the appropriate top pointer to the
bottom subtree

• Destroy the node

A

B

λ

top

bottom

C

A
top

C

Presenter
Presentation Notes
In case 2, the removal node has one subtree, which the function must preserve. The function resets the top subtree pointer, pointing to the bottom when the removal begins, to point to the bottom’s non-null subtree, and then deletes the bottom node.

REMOVE (3)

• Case 3: Two subtrees – four phases

• Find the removal node

• Find the successor (the next node)

• Go right

• Go left until left is null

• Copy the successor’s data to the bottom

• Destroy the successor (case 1 or 2)

F

B

D G IA

λ
C E

H

Presenter
Presentation Notes
The third case, removing a node with two subtrees, is the most complex operation. We can manage the complexity by dividing the function’s operations into four phases. First, the function finds the removal node using the descent process described previously, leaving the top and bottom pointers as illustrated.

REMOVE (3)

• Case 3: Two subtrees

• Find the removal node

• Find the successor (the next node)

• Go right

• Go left until left is null

• Copy the successor’s data to the bottom

• Destroy the successor (case 1 or 2)

F

B

D G IA

λ
C E

H

Presenter
Presentation Notes
Next, it finds the removal node’s successor – the node storing the next value – by further descending the tree. The bottom pointer marks the removal node, which the function must “remember,” making bottom unavailable for the next operation. The program introduces a new successor pointer to track the bottom of the descent operation and reuses the top pointer as illustrated.

REMOVE (3)

• Case 3: Two subtrees

• Find the removal node

• Find the successor (the next node)

• Go right

• Go left until left is null

• Copy the successor’s data to the bottom

• Destroy the successor (case 1 or 2)

F

C

D G IA

λ
C E

H

Presenter
Presentation Notes
Copy the successor’s data to the removal node indicated by the bottom pointer.

REMOVE (3)

• Case 3: Two subtrees

• Find the removal node

• Find the successor (the next node)

• Go right

• Go left until left is null

• Copy the successor’s data to the bottom

• Destroy the successor (case 1 or 2)

F

C

λ
D G IA

E

H

Presenter
Presentation Notes
Finally, the function deletes or destroys the successor node using the case 1 or 2 algorithm as appropriate. All the removal cases preserve the binary tree ordering property: the data in a node’s left subtree is less than the node’s data.

	Binary Trees:�Template Examples
	Binary Trees
	Implementing binary trees
	Descending the tree
	remove (1)
	Remove (2)
	Remove (3)
	Remove (3)
	Remove (3)
	Remove (3)

