

BINARY TREES: TEMPLATE EXAMPLES

Overview

BINARY TREES

- Create
- Destroy
- Insert
- Search
- Remove

IMPLEMENTING BINARY TREES

DESCENDING THE TREE

REMOVE (I)

- Slower than search or insert
- Three cases:
 - No subtrees (is a leaf)
 - One subtree
 - Two subtrees
- Case I: No subtrees
 - Destroy the node
 - Set the appropriate top subtree pointer to null

REMOVE (2)

- Case 2: One subtree
 - Set the appropriate top pointer to the bottom subtree
 - Destroy the node

- Case 3:Two subtrees four phases
 - Find the removal node
 - Find the successor (the next node)
 - Go right
 - Go left until left is null
 - Copy the successor's data to the bottom
 - Destroy the successor (case I or 2)

- Case 3:Two subtrees
 - Find the removal node
 - Find the successor (the next node)
 - Go right
 - Go left until left is null
 - Copy the successor's data to the bottom
 - Destroy the successor (case I or 2)

- Case 3:Two subtrees
 - Find the removal node
 - Find the successor (the next node)
 - Go right
 - Go left until left is null
 - Copy the successor's data to the bottom
 - Destroy the successor (case I or 2)

- Case 3:Two subtrees
 - Find the removal node
 - Find the successor (the next node)
 - Go right
 - Go left until left is null
 - Copy the successor's data to the bottom
 - Destroy the successor (case 1 or 2)

