BINARY TREE EXAMPLE I:
ONE TEMPLATE VARIABLE

Managing orderable objects

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Programmers can store any orderable data in a binary tree, but trees are most beneficial when storing objects – instances of structures or classes – with two or more members. Their organization makes the insert and search operations relatively fast while implementing them with a template variable makes them flexible.

ASSOCIATIVE DATA STRUCTURES
AND SEARCHES

Dilbert
Alice
Wally
Asok

Associative data are a set of related

225 Elm values

256 N 400 W Implemented as objects
718 Washington Viewed as a table

633 Adams Rows correspond to objects

Columns correspond to member variables

An object is accessed by a key, making
the associated values available

Presenter
Presentation Notes
Programs access binary tree data by searching for part of the data, called the key. If it finds the key, all associated data is available to the program. Imagining the data as a table clarifies the process. Each table row corresponds to an object, and each column corresponds to one of the object’s data members. In this example, the key is the “Name” member. If the program searches for and finds Wally, it can access his address and other associated data. Searching a data structure by content rather than the data’s location is called an associative search, making binary trees associative data structures. Insert and remove are also associative operations because they begin with a search process.

class Employee
{
private:
string name;
string address;

public:
Employee(string n = "", string a = "")
: name(n), address(a) {}

bool operator==(Employee& e) { return name == e.name; }
bool operator<(Employee& e) { return name < e.name; }

friend ostream& operator<<(ostream& out, Employee& me)

{

out << me.name <<
return out;

<< me.address;

}s

Presenter
Presentation Notes
The example demonstrates binary trees implemented with one template variable by replacing the variable with the Employee class. Binary trees order the stored data such that the keys in the left subtree are less than the key in the subtree’s root, which is less than the keys in the right subtree, implying that the objects stored in the tree are orderable. C++ programmers can make objects orderable by overloading relational operators, as illustrated by the Employee class.

THE Tree

template <class T>
class Tree
{
private:
T data;
Tree<T>* 1left = nullptr;
Tree<T>* rpright = nullptr;
public:
~Tree();
T* insert(T key);
T* search(T key);
void remove(T key);

};

#include <iostream>
#include <string>
#include "Tree.h"
#include "Employee.h"
using namespace std;

int main()

{

Tree<Employee> tree;

Presenter
Presentation Notes
The following code fragments abridge the Tree class and its functions, but students can find complete versions in the textbook. Programmers specify the class’s data members and functions using a single template variable. The in-class initializations and destructor implement the tree construction and destruction operations, respectively. The class specification also prototypes functions for the three critical operations: insert, search, and remove.
Client programs instantiate the tree’s root on the stack and use the tree through it, building and searching it by calling the Tree member functions. In this example, the Employee class replaces the template variable, T.

RECURSIVE DATA STRUCTURES

template <class T>

Tree<T>: :~Tree()

| N {

\\)A if (left != nullptr)
delete left;

if (right != nullptr)

/ L\ delete right;

Jl \ //cout << data << endl;

Presenter
Presentation Notes
Binary trees are “recursive data structures.” Looking at any subtree, it also has a root, subtrees, and follows the tree ordering property. Even leaf nodes are the roots of trees with empty or null subtrees.
Programmers often replace recursion with more efficient iteration, particularly when the function only has one recursive call (called single-tail recursion). Nevertheless, recursive functions are far more compact and elegant in some cases than the iterative versions, particularly when the function has multiple recursive calls. The destructor is a case in point. The delete operator triggers a call to the destructor, making it a recursive function with two recursive calls. Recursion follows each subtree until reaching an empty one.

POINTER INITIALIZATION

Tree<T>* top = this; root

Tree<T>* bottom = right; \ | €< top

\

top = bottom;

<— bottom

/ 1\
VARV

Tree<T>* succ = bottom->right;

Presenter
Presentation Notes
Without providing details, the previous section outlined the descent process by tracking two pointers moving downward in the tree. The program creates the first node, labeled as the tree’s root in the illustration, using it as a handle that doesn’t contain data. The tree insert algorithm always puts the first data node in the root’s right subtree. The descent begins when a function initializes the pointers. Recall that the “this” pointer points to the object bound to the function, for example, the search, insert, or remove functions. The functions initialize the bottom pointer to the root’s right subtree.
The remove function performs two descent operations, the first beginning at the root. The second descent locates the successor node, beginning with the node indicated by the bottom pointer. It reuses the top pointer but introduces a successor pointer, preserving the address in the bottom pointer to use later in the removal operation.

DESCENDING THE TREE:
SELECTING A SUBTREE

top = bottom; ——tf(§>A——

if (key < bottom->data)
bottom = bottom->left;

/ 1\ / 1\
N
else

bottom = bottom->right;

bottom = (key < bottom->data) ? bottom->left : bottom->right;

((top != this && key < top->data) ? top->left : top->right) = bottom;

Presenter
Presentation Notes
The functions iteratively descend the tree by moving the top pointer down one level and selecting one of the bottom pointer’s subtrees. They select the subtree by comparing their “key” parameter with the data in the current bottom node. The binary tree property always puts data less than “key” in the left subtree and data greater than “key” in the right subtree, and disallows duplicate data. Programmers can select the subtree with an if-statement or the conditional operator, which is more compact.
The insert operation selects and updates one of the subtrees. This example demonstrates an unusual conditional operator statement – notice the location of the assignment operator – the conditional operator returns a pointer, valid as the assignment operator’s left-hand operand. We could also use an if-statement.

template <class T>

T* Tree<T>::insert(T key)

{ .
Tree<T>* top = this; THE Tree insert
Tree<T>* bottom = right; FUNCTlON
while (bottom != nullptr)

{

if (bottom->data == key)
return &bottom->data;

top = bottom;
bottom = (key < bottom->data) ? bottom->left : bottom->right;
}

bottom = new Tree;
bottom->data = key;

((top != this && key < top->data) ? top->left : top->right) = bottom;

return &bottom->data;

Presenter
Presentation Notes
The insert function puts the descent operation into an authentic context, beginning with the “key” parameter and the pointer initializations. Unless interrupted, the descent operation loops until it reaches the tree’s bottom. If the function detects a tree node already storing the key value, it interrupts the loop, returning a pointer to the stored data; otherwise, it updates the pointers and continues with the next iteration. If the function reaches the bottom, it creates a new node, installs the data, and updates the appropriate subtree pointer. The function ends by returning a pointer to the newly inserted node for convenience.
We can convert insert into the search function with a few simple changes: First, the search function only needs the bottom pointer. Second, it doesn’t add nodes to the tree. And finally, it returns null if the “key” is not found in the tree.
The remove operation is more complex than the search and insert operations. Decomposing it into three functions makes it easier to understand and program. We can convert the insert function into the first remove function, which locates the removal node by descending the tree. The descent requires both pointers and loops until it finds the removal node or reaches the tree’s bottom. However, if it finds the removal node, it calls a private overloaded remove function to remove the node from the tree.

REMOVING TREE NODES (1)

template <class T>

template <class T>
int Tree<T>::subtrees()

void Tree<T>::remove(Tree<T>* top, Tree<T>* bottom)

{ {
if (left == nullptr && right == nullptr) switch (bottom->subtrees())
return 0; {
else if (left == nullptr || right == nullptr) case 0O:
return 1; . .
else case 1:
return 2; . .
} case 2:

Presenter
Presentation Notes
The subtrees function classifies “this” node as having zero, one, or two subtrees. The second test is true if both subtrees are null, but the first test detects and processes that case. Depending on the node’s classification, a switch statement in the overloaded remove function selects the appropriate removal algorithm.

REMOVING TREE NODES (2)

case O: |

//cout << "CASE 1" << endl; é

if (top->left == bottom) top >
top->left = nullptr; /

else ‘/
top->right = nullptr; A

delete bottom; < bottom

return; A A

<—top

\

bottom >

Presenter
Presentation Notes
The code and comment use the word “case” in two related but distinct ways. The text describes three algorithmic cases and labels them with the customary counting numbers, beginning with one. Alternatively, the switch statement case labels correspond to a node’s non-null subtrees. If it’s less confusing, you can modify the subtrees function and switch statement cases to use 1, 2, and 3.
The if-statement sets one of the top’s subtrees to null, indicating the removed tree. We could replace it with a conditional operator as described previously. The delete operator triggers a call to the destructor to destroy the bottom node. Finally, I used a return operator instead of a break because I initially toyed with returning a pointer from the function.

REMOVING
TREE NODES (3)

top >

d

)

case 1:
//cout << "CASE 2" << endl;
if (top->left == bottom)
top->left = (bottom->right
else if (top->right == bottom)

top->right = (bottom->right

bottom->left = bottom->right =
delete bottom;
return;

bottom

top >

< bottom

nullptr) ? bottom->left

< top

bottom

nullptr) ? bottom->left

nullptr;

< top

bottom

-

Y

Ll

: bottom->right;

: bottom->right;

Presenter
Presentation Notes
The second case removes a node with one subtree by replacing the bottom node with its non-null subtree. This case has four possible execution paths based on the combination of the top and bottom node’s subtrees. The conditional statements make selecting and processing the correct path easier by eliminating the nested if-else statements. The delete operator triggers the destructor, which runs until reaching the bottom of the subtrees. Both bottom subtrees must be null to prevent the destructor from deleting nodes still in use. One subtree is already null, but it’s more efficient to set both to null than to test and set just one.

REMOVING TREE NODES (4)

case 2:

//cout << "CASE 3" << endl;
top = bottom;
Tree<T>* succ = bottom->right;
while (succ->left != nullptr) __ch/// \\iix___
{ B

top = succ; AEN

succ = succ->left;
) 50
bottom->data = succ->data;
remove(top, succ); AR
return; ‘/ \\

C E

Presenter
Presentation Notes
The final case, removing a node with two subtrees, is the most challenging. The first descent operation finds the node the function must remove, shaded red, leaving the top and bottom pointers as illustrated. The next step locates the removal node’s successor – the node storing the next value, shaded green. The algorithm descends the tree by initializing two pointers and moving them downward in the tree: right once, then left until reaching a node with a null left subtree.
The function copies the data from the successor node to the bottom node. The now-disused successor has zero or one subtree – situations handled by the first two cases – and the function recursively calls itself to remove it.

	Binary tree Example 1:�One template variable
	Associative data structures�and searches
	The Employee Class
	The Tree Class
	Recursive Data Structures
	pointer initialization
	Descending the tree:�Selecting a subtree
	The Tree insert function
	Removing tree nodes (1)
	Removing tree nodes (2)
	Removing�tree nodes (3)
	Removing tree nodes (4)

