ITERATORS AND
NESTED CLASSES

Adding sequential access to binary trees

Delroy A. Brinkerhoff


Presenter
Presentation Notes
Iterators and nested classes are independent of template variables. However, to make the two-variable binary tree an authentic container class, it needs an iterator, and iterators need nested classes.



ITERATORS VS. “WALKING THE TREE”

D “Walking the tree”

// \/\\ Ordered processing of each node

B F All processing is done in the “walk” function
/ m / m Iterators
A C E G Ordered processing of each node

%& %& %& %& Program can leave the iterator, returning to

the next node anytime

Left until null
Visit Iterators “remember” where they are

Right until null


Presenter
Presentation Notes
Iterators allow programs to access the nodes in a dynamic data structure sequentially. However, the previous one-variable tree example provided two functions, list and tree_view, that accomplished the task with recursion rather than iterators. Informally, we can visualize recursion’s behavior using a technique called “walking the tree.”
The algorithm begins at the root, making a counterclockwise circuit around the tree. It takes the left subtree until it reaches a null, where it stops to visit or process the node. It takes the right subtree until it reaches a null, causing it to visit the next node. The visit operation always occurs when the algorithm is between the tree branches.
Iterators are more flexible than recursion or “walking the tree.” Programs can’t begin a tree walk, stop and leave, and return to continue with the next node in the sequence. Iterators “remember” their processing location in the structure, allowing programs to leave and return as needed.



SPECIFYING NESTED CLASSES

class Outer class Outer
{ {
public: public:
class Nested class Nested;
{ ¥
}s class Outer: :Nested
}s {

s


Presenter
Presentation Notes
C++ allows programmers to nest one class inside another. The nested class, called an inner class in Java, can access all of the outer class’s members, even if they are private. Programmers can include the specifications for a small nested class inside the outer class but use a forward reference for a larger class. A forward reference introduces a name to the compiler, declares it as a class, and “promises” a full specification later. The outer class’s name becomes an integral part of the nested class’s name.



TREE MEMBERS SUPPORTING ITERATORS

class iterator; template <class K, class V>
Nt count(int number = 0); Ent KVTree<K,V>::count(int number)
iterator get keys() if (left != nullptr)
{ number = left->count(number + 1);
iterator i(this); if (right != nullptr)
return i; number = right->count(number + 1);
} return number;


Presenter
Presentation Notes
The tree class needs three additional members to support an iterator. First, it needs an iterator object. We can say that “the tree has an iterator” and implement the relationship by composition. Second, the proposed iterator implementation uses an array of key pointers; creating a correctly sized array requires counting the tree nodes. Optionally, we can implement the iterator with a list and use its iterator. The following sections introduce the C++ Standard Template Library and demonstrate its list class. Finally, typical of most dynamic data structures, the tree class must have a function to create and return an iterator. The “this” pointer refers to the outer class object.



THE ITERATOR CLASS

template <class K, class V> public:
class KVTree<K, V>::iterator iterator(KVTree<K,V>* outer);
{ iterator(iterator& i);
private: ~iterator() { delete[] keys; }

int size = 0; K next() { return keys[index++]; }

int index = 0; bool has _next() { return index < size; }

K* keys = nullptr; void reset() { index = 0; }

private:

void add keys(KVTree<K,V>* tree);


Presenter
Presentation Notes
The iterator also uses template variables and begins like any template class. It has two crucial data members: an index “remembering” where it is in the tree and an array of pointers holding the tree’s keys. The primary constructor requires a pointer to the outer class. The copy constructor is necessary for the “get_keys” function to return the iterator to the client program. The destructor deallocates the array.
”next” and “has_next” are the primary functions the client calls to use the iterator. The “next” function returns the next key in the sequence, while “has_next” returns true if there are more keys to process and returns false when no keys remain. The “reset” function allows the client to restart the iterator at its beginning. Changing the tree – inserting or removing nodes – invalidates the iterator, requiring the client to create a new one.
Slide 6
The full names of the iterator member functions include the outer and nested class names. The iterator constructor counts the tree nodes and allocates the array. Recall that the tree’s root is a handle that doesn’t store data and that the insert function inserts the first data node in the root’s right subtree. So, a null right subtree indicates an empty tree, and the constructor doesn’t attempt to add any keys. The add_keys function uses the index to fill the array, making it necessary to reset it to 0.
The add_keys function recursively fills the array with the tree’s key values. The pattern of statements in the body should look familiar as the function is just “walking the tree.”



ITERATOR FUNCTIONS

template<class K, class V>
KVTree<K,V>::iterator::

{

iterator(KVTree<K,V>* outer)

size = outer->count();
keys = new K[size];
if (outer->right != nullptr)
add_keys(outer->right);
else
return;
index = 0;

template <class K, class V>
void KVTree<K,V>::iterator::

{

add_keys (KVTree<K,V>* outer)

if (outer->left != nullptr)
add_keys(outer->left);

keys[index++] = outer->key;

if (outer->right != nullptr)
add_keys(outer->right);


Presenter
Presentation Notes
The full names of the iterator member functions include the outer and nested class names. The iterator constructor counts the tree nodes and allocates the array. Recall that the tree’s root is a handle that doesn’t store data and that the insert function inserts the first data node in the root’s right subtree. So, a null right subtree indicates an empty tree, and the constructor doesn’t attempt to add any keys. The add_keys function uses the index to fill the array, making it necessary to reset it to 0.
The add_keys function recursively fills the array with the tree’s key values. The pattern of statements in the body should look familiar as the function is just “walking the tree.”



USING THE TREE ITERATOR

KVTree<string, int>::iterator keys = tree.get keys();

while (keys.has next())
{
string word = keys.next();
int count = *tree.search(word);
cout << left << setw(20) << word <<
right << setw(3) << count << endl;



Presenter
Presentation Notes
The previous video demonstrated how the WordCount program reads the words and builds the counting tree. It finishes by displaying the words in alphabetic order with their respective counts.
The get_keys function creates and returns an iterator of the key values. The has_next function drives the while-loop, iterating over all the key values. The program gets the next key from the iterator with the next function and searches the tree for it, printing the word and its count to the console.



	iterators and�nested classes
	iterators vs. “walking the tree”
	Specifying nested classes
	Tree members supporting iterators
	the iterator class
	Iterator functions
	Using the Tree Iterator

