BINARY TREE EXAMPLE 2:
TWO TEMPLATE VARIABLES

Mapping keys to values

K-V Pairs

Delroy A. Brinkerhoff


Presenter
Presentation Notes
Programmers typically use one-template-variable data structures to organize objects with many data members and manipulate them with a relatively small subset of the members. In contrast, they use two-template-variable structures to map one object, called the key, to another, called the value. Hash tables and various kinds of trees are the most common mapping structures.



MAPPING KEYS TO VALUES

The K-V mapping

|”

May have a “natural” association

May be meaningful only in a given problem
Key and Value can be simple or complex
Program searches for the Key to use the Value

Implemented with a “fast” search algorithm
Binary tree

Hash table



Presenter
Presentation Notes
Mathematically, a one-to-one mapping function algorithmically connects one element of the function’s domain to one element of its range. In some cases, the domain and range elements may have a “natural” association; in other cases, as the picture illustrates, they may only have a logical connection in the context of a specific problem. The following outlined program counts the number of unique words in a book by mapping a string to an integer. Outside of this or another specific problem, the mapping doesn’t have a “natural” meaning.
Programs utilizing a mapping operation implement it with a fast search algorithm, such as a hash table or binary tree. The word-counting problem demonstrates a binary tree implemented with two template variables, one representing the key and the other the mapped value.



template <class K, class V>
class KVTree

{
private:
K key;
Vv value;

THE KVTree<K,V>* left = nullptr;
KVTree KVTree<K,V>* right = nullptr;
SRS public:

~KVTree();

V* insert(K key, V value);
V* search(K key);
void remove(K key);

)i


Presenter
Presentation Notes
Adding a second template variable doesn’t significantly alter the template syntax. We still activate the mechanism with the “template” keyword and introduce the variables with “class” or “typename.” However, creating a template class with two or more template variables requires forming a comma-separated list of variable names that becomes part of the expanded type name. In this example, we also add a second insert function parameter. Together, the parameters express the mapping between a key and a value.



template <class K, class V>
V* KVTree<K, V>::insert(K key, V value)

{ :
KVTree<K, V>* top = this; THE KV Tree insert
KVTree<K, V>* bottom = right; FUNCT'ON
while (bottom != nullptr)

{

if (bottom->key == key)
return &bottom->value;

top = bottom;
bottom = (key < bottom->key) ? bottom->left : bottom->right;

¥

bottom = new KVTree;

bottom->key = key;

bottom->value = value;

((top != this && key < top->key) ? top->left : top->right) = bottom;

return &bottom->value;


Presenter
Presentation Notes
Logically, there isn’t any difference between the one- and two-variable versions of the insert function. However, the complete, expanded class name reflects both variables. Furthermore, the “copy” operation requires two assignment operations: one each for the key and value.



MAPPING AN ID TO AN EMPLOYEE

KVTree<int, Employee> tree;

tree.insert(400, Employee("Dilbert", "225 EIm"));

cout << "Search: " << *tree.search(500) << endl;
tree.remove(800);



Presenter
Presentation Notes
Implementing binary trees with two template variables allows programmers to use them to solve various problems. In this example, the tree maps an employee’s ID to an Employee object. The insert function maps a specific ID number to the rest of the employee’s information. The program searches for or removes an employee with the associated ID. Given the “natural” association between an Employee object and an ID number, we could also implement the program with a single-variable tree.



THE
WordCount

PROGRAM

KVTree<string, int> tree;

while ((c = file.get()) != EOF)
{
if (isalpha(c))
word += tolower(c);
else if (word.length() > 0)
{
int* count = tree.search(word);
if (count != nullptr)
(*count)++;
else
tree.insert(word, 1);
word.clear();


Presenter
Presentation Notes
The video excerpts the illustrated code fragment from the word count program, but students can find the complete program in the textbook.
Template variables make it easy for programmers to choose the data types of the keys and associated values stored in the tree. For example, the previous program used integers for the key, but they form the value here, mapping a word to its count. The program reads the book one character at a time until it reaches the end of the file. If the character is alphabetic – an upper or lower case letter – the program converts it to a lowercase letter and appends it to the current word. “tolower” doesn’t affect lowercase letters but ensures that “Word” and “word” count as one.
The program treats non-alphabetic characters as word separators, ending the current word. When the program extracts a complete word, it searches for it in the tree. If it finds the word, it increments its count; otherwise, it inserts the word with a count of 1. Finally, it clears or empties the word variable in preparation for the next word.



	Binary tree Example 2:�two template variables
	Mapping Keys To Values
	The KVTree Class
	The KVTree insert function
	Mapping an ID to an Employee
	The WordCount Program

