
ARRAY 2

Flexible Arrays

Delroy A. Brinkerhoff

Presenter
Presentation Notes
The textbook introduced the Array class to demonstrate the overloaded index operator. This version extends it by making it a template class. Unlike other containers, the Array class is simple and offers limited benefits to application programmers. However, its simplicity makes it a good vehicle for demonstrating several programming concepts in an authentic context.

THE Array CLASS MEMBERS

private:
 int lower;
 int upper;
 T* array;

public:
 Array(int s, int e);
 ~Array() { delete[] array; }
 T& operator[](int index);
 T& at(int index);

Presenter
Presentation Notes
Fundamental or non-object arrays are always zero-indexed, but instances of the Array class offer increased flexibility. They allow a client program to establish a lower and upper bound and access any element in that range, including the ends. They allocate a fundamental array on the heap, which the constructor and destructor manage. Two indexing functions translate the Array indexes to the fundamental array’s zero-based indexes.

THE Array CONSTRUCTOR

#include <stdexcept>
using namespace std;

template <class T>
Array<T>::Array(int l, int u) : lower(l), upper(u)
{
 if (upper < lower)
 throw invalid_argument("Upper must be >= lower");

 array = new T[upper - lower + 1]{};
}

Presenter
Presentation Notes
The constructor’s primary task is allocating the storage array, using a simple formula for calculating its size. However, the formula fails if the application programmer enters incorrect bounds. So, the constructor checks the bounds and throws an exception if they are inconsistent. The “invalid_argument” exception is a standard, predefined C++ exception.
Slide04
The two indexing functions are key to the Array’s behavior. Both return a reference to an Array element, meaning that the client program can use the element as an l- or r-value. The index operator translates the Array index to a fundamental index without validation. The “at” function validates that the “index” is inbounds and throws an exception if it is not. The “out_of_range” exception is another standard C++ exception.

Array
INDEXING

FUNCTIONS
template <class T>
T& Array<T>::operator[](int index)
{
 return array[index - lower];
}

template <class T>
T& Array<T>::at(int index)
{
 if (index < lower || index > upper)
 throw out_of_range("Index out of bounds");

 return array[index - lower];
}

Presenter
Presentation Notes
The two indexing functions are key to the Array’s behavior. Both return a reference to an Array element, meaning that the client program can use the element as an l- or r-value. The index operator translates the Array index to a fundamental index without validation. The “at” function validates that the “index” is inbounds and throws an exception if it is not. The “out_of_range” exception is another standard C++ exception.

Array AND ANAGRAM

• Form an anagram by rearranging the
letters of one phrase to form a second

• Ignore spaces, punctuation, letter case

• The two phrases have the same number
of a’s, b’s, c’s, etc.

• An anagram checker counts the
occurrence of each letter

Presenter
Presentation Notes
To create an anagram, we begin with a phrase and rearrange its letters to form a second phrase, ignoring spaces, punctuation, and letter case. To test two phrases to see if one is an anagram of the other, we compare the occurrences of each letter in the two phrases. If all letters have the same number of occurrences, one phrase is an anagram of the other.
The anagram problem represents an authentic use of the Array class and its flexible bounds. The initial anagram solution utilized a traditional, zero-indexed array of 26 counters. The application program converted each letter to an index from 0 to 25 by subtracting an ASCII ‘a’ from the character. The Array-based solution defines an Array object indexed from ‘a’ to ‘z.’ Characters are ASCII-encoded integers, so the Array object has a lower bound of 97 and an upper bound of 122. This approach moves the index conversion from the application to the Array index functions.

EXCEPTION HANDLING

try
{
 . . .
}
catch (invalid_argument ia)
{
 cerr << ia.what() << endl;
}
catch (out_of_range oor)
{
 cerr << oor.what() << endl;
}

Presenter
Presentation Notes
Two Array functions, the constructor and “at,” throw exceptions, which the application must handle. Programmers place statements that might cause an exception, the bulk of the anagram program, in a try block, and define a catch block for each exception that might arise. The exception objects inherit the “what” function from a common superclass.

THE TEST PHRASES

const char* p1 = "To be or not to be: that is the question, whether "
 "it's nobler in the mind to suffer the slings and arrows of "
 "outrageous fortune.";

const char* p2 = "In one of the Bard's best-thought-of tragedies, "
 "our insistent hero, Hamlet, queries on two fronts about how "
 "life turns rotten.";

Presenter
Presentation Notes
The example program defines two test phrases demonstrating a clever anagram. Using preprocessor concatenation, the preprocessor joins adjacent strings to form a single string literal.

COUNTING THE LETTER
OCCURRENCES

Array<int> a1('a', 'z');
Array<int> a2('a', 'z');

for (size_t i = 0; i < strlen(p1); i++)
 if (isalpha(p1[i]))
 a1[tolower(p1[i])]++;

for (size_t i = 0; i < strlen(p2); i++)
 if (isalpha(p2[i]))
 a2[tolower(p2[i])]++;

Presenter
Presentation Notes
The anagram solution creates two instances of the Array class, one for each phrase. The Array objects store 26 integers that count the occurrences of each letter in a phrase.

COUNTING THE LETTER
OCCURRENCES

Array<int> a1('a', 'z');
Array<int> a2('a', 'z');

for (size_t i = 0; i < strlen(p1); i++)
 if (isalpha(p1[i]))
 a1[tolower(p1[i])]++;

for (size_t i = 0; i < strlen(p2); i++)
 if (isalpha(p2[i]))
 a2[tolower(p2[i])]++;

Presenter
Presentation Notes
The for-loops visit the characters in the phrases one at a time, processing alphabetic or letter characters and skipping spaces and punctuation.

COUNTING THE LETTER
OCCURRENCES

Array<int> a1('a', 'z');
Array<int> a2('a', 'z');

for (size_t i = 0; i < strlen(p1); i++)
 if (isalpha(p1[i]))
 a1[tolower(p1[i])]++;

for (size_t i = 0; i < strlen(p2); i++)
 if (isalpha(p2[i]))
 a2[tolower(p2[i])]++;

Presenter
Presentation Notes
The “tolower” function converts capital letters to lower-case and returns lower-case letters unchanged.

COUNTING THE LETTER
OCCURRENCES

Array<int> a1('a', 'z');
Array<int> a2('a', 'z');

for (size_t i = 0; i < strlen(p1); i++)
 if (isalpha(p1[i]))
 a1[tolower(p1[i])]++;

for (size_t i = 0; i < strlen(p2); i++)
 if (isalpha(p2[i]))
 a2[tolower(p2[i])]++;

Presenter
Presentation Notes
The index operator converts the letter argument into a valid array index value and returns a reference to the indexed counter. Recall that programs can use references as l- or r-values.

COUNTING THE LETTER
OCCURRENCES

Array<int> a1('a', 'z');
Array<int> a2('a', 'z');

for (size_t i = 0; i < strlen(p1); i++)
 if (isalpha(p1[i]))
 a1[tolower(p1[i])]++;

for (size_t i = 0; i < strlen(p2); i++)
 if (isalpha(p2[i]))
 a2[tolower(p2[i])]++;

Presenter
Presentation Notes
Once the index operator extracts a specific counter from the Array object, the auto-increment operator increments the count, indicating that the program detected another occurrence of the letter.

VERIFYING OR REJECTING
AN ANAGRAM

for (int i = 'a'; i <= 'z'; i++)
 if (a1[i] != a2[i])
 {
 cout << "NOT an anagram" << endl;
 exit(0);
 }

cout << "Valid anagram" << endl;

Presenter
Presentation Notes
The program compares each pair of character counts. It rejects the phrases as an anagram if any pair is unequal and verifies they are an anagram only after comparing all pairs.

	Array 2
	The array class members
	The array constructor
	array indexing functions
	array and Anagram
	Exception Handling
	The test phrases
	Counting the letter�occurrences
	Counting the letter�occurrences
	Counting the letter�occurrences
	Counting the letter�occurrences
	Counting the letter�occurrences
	Verifying or Rejecting�an anagram

