AN INTRODUCTION TO THE STL

The Standard Template Library

A library of well-known, frequently-used data structures.

Delroy A. Brinkerhoff


Presenter
Presentation Notes
Computer programs solving real-world problems universally require data. Even moderately sized programs often organize data in complex ways. The C++ Standard Template Library supplies programmers with a wide selection of ready-made, flexible, and well-known data structures for managing complex data.



PRACTICAL DATA STRUCTURE
IMPLEMENTATIONS

FUNDAMENTAL STRUCTURES LIBRARY STRUCTURES

Processed by the compiler Too complex for the compiler (would
Simple variables make the compiler too big)

Structures Lists

Arrays Sequences: vector, stack, queue, deque, etc.

Trees

Hash Tables


Presenter
Presentation Notes
Single variables, structures, and arrays are examples of relatively simple data structures. Although structures and arrays can be arbitrarily large, the patterns or syntax describing them are small, so the compiler can directly process the fundamental data structures as language primitives.
Alternatively, more complex structures, such as lists, stacks, trees, and hash tables, are more complex and irregular in nature. Attempting to make them language primitives would make the compiler impractically large, complex, and slow. Nevertheless, these structures are essential components of programs that manage large volumes of data, making them ideal candidates for inclusion in libraries.



CATEGORIZING DATA STRUCTURES

SEQUENTIAL ASSOCIATIVE
Elements accessed by position Elements are an aggregate type
Like an array index Structure object
insert(element, index) Class object
remove(index) One field is a key
at(index) Programs search for the key, and if found,
Gy retrieve all data (fields) associated with it.

back


Presenter
Presentation Notes
Computer scientists categorize data structures in many ways. For the current discussion, a convenient way to categorize them is as sequential and associative. The distinguishing characteristic between the two is how they access the stored data. Programs access the individual elements stored in a sequential structure by their position, similar to accessing array elements by index. The elements can be single variables or objects with many fields.
In contrast, the elements stored in associative structures are objects with at least two fields, but often more. One field represents a key. Associative structures use the key to manage the stored data, and programs use it to retrieve data. For example, imagine that an associative structure stores instances of a Student class. The class may have fields for the student’s name, ID number, address, and other relevant information. Either the name or ID can serve as the key. A program can search the structure for an element with a given key, and if it finds an object matching the key, it can retrieve all the student’s relevant information.



DATA STRUCTURE OPERATIONS

GENERAL STL vector
Create Constructor
Destroy Destructor
Insert push _back(e), insert(pos, e)
Access (search or find) operator[i], front(), back()

Remove pop back(), erase(), clear()


Presenter
Presentation Notes
Computer scientists often characterize data structures by the operations they support. Five operations are typical, but support depends on the specific structure. The names of the member functions implementing the operations typically reflect the structure’s organization. For example, programs add new data to a stack with the push function and to a map with the insert function. This example illustrates the names given to the STL vector functions that implement the standard data structure operations.



STL ITERATORS

Quter Class ) ) .
STL containers implement iterators as
nested classes
Pri‘-’ﬂtE FE‘ﬂturE'S Outer\ : : Nested

Each container has its own iterator

Nested Class

Nested classes can access the outer
class’s private features (data and
functions)

Iterators “remember where they are” in
the data structure


Presenter
Presentation Notes
Another distinguishing feature of the STL is its many iterators. Iterators are first and foremost classes. However, the STL implements them as nested classes – a class specified inside another class. This arrangement also nests one scope inside another, so the full name of the inner class consists of the outer and inner class names joined with the scope resolution operator, preventing conflicts if multiple outer classes have iterators with the same name.
When instantiated, a nested class can access the private features (variables and functions) of its outer class, allowing programs to access data stored in an STL outer class through its iterator. Programs use iterators to access data stored in a container in an ordered fashion. Furthermore, iterators “remember” their position in the container, allowing programs to retrieve a data item, process it, and return for the next data item when needed.



vector<int>: :iterator

FORWARD ITERATORS

begin()

end()

for (auto 1 = v.begin(); i != v.end(); i++)
cout << *i << " "

J

++

begin

end

sentinel


Presenter
Presentation Notes
This example continues using the vector class to illustrate iterators. In conjunction with the overloaded not-equal and auto-increment operators, two functions, begin and end, return iterator objects that work together to drive a for-loop. The begin function returns an iterator referring to the first saved element, and the auto-increment operator advances it to the next element. The iterator’s overloaded dereference operator returns the data saved in the container element currently referenced by the iterator.
The behavior of the end function is the most challenging aspect of iterator operation. It’s natural to suppose that the end function returns an iterator referencing the last element in a container. However, if that were the case, the not-equal operator would terminate the loop before it could process the final element. The STL solves the problem by creating a “dummy” or sentinel object. The end function refers to the sentinel, and the increment operator advances the begin iterator to it after processing all elements saved in the container.



REVERSE ITERATORS

vector<int>: :iterator

++

rbegin()
rend()
o - T © ]
for (auto i v.fbeglq(a, il=v.rend(); i++) __ .
cout << *i <« ; T
rend

rbegin


Presenter
Presentation Notes
Reverse iterators work similarly to forward iterators. The rbegin function returns an iterator referencing the last container element, while rend returns a sentinel marking the beginning of the structure. The increment operator advances the iterator from right to left, in the reverse direction (relative to the English reading order). Programs access container elements by dereferencing the iterator. Not all containers support iterators, and of those that do, some support forward but not reverse iterators.



	An Introduction to the STL
	Practical Data Structure Implementations
	Categorizing Data Structures
	Data structure operations
	STL Iterators
	Forward Iterators
	Reverse Iterators

