CONTAINERS AND COMPARATORS

Comparing and organizing container data with comparators

Delroy A. Brinkerhoff


Presenter
Presentation Notes
To enable the orderable STL containers to work with objects, each has overloaded functions that support the use of comparators. This video revisits two previously defined comparators, demonstrating how programs can use them to organize container data.



DATA CLASS

class Employee

{
private:
string name;
int position;

int id;



Presenter
Presentation Notes
The examples assume an Employee class with three member variables: name, position within a company, and an ID number.



ALPHABETICAL BY NAME

COMPARATOR
class compByName
{
public:
bool operator()(const Employee& el, const Employee& e2) const
{
return el.getName() <= e2.getName();
}

s


Presenter
Presentation Notes
The first comparator compares two Employee objects by name, organizing them alphabetically. Given two objects as parameters, it extracts the names from each one and compares them with the overloaded string less than or equal to operator, returning a Boolean value.



GROUPED BY POSITION, SORTED BY ID
COMPARATOR

enum { OFFICER, MANAGER, ENGINEER };

class compByNumber

{
public:

bool operator()(const Employee& el, const Employee& e2) const

{
if (el.getPosition() == e2.getPosition())
return el.getID() <= e2.getID();
return el.getPosition() <= e2.getPosition();

s


Presenter
Presentation Notes
The second comparator compares two Employee objects with a combination of two data members. First, by the employees’ positions within the company, with officers preceding managers, and managers preceding engineers, and second, by their respective ID numbers.



SORTING OBJECTS
WITH COMPARATORS

vector<Employee> employees;

employees.push _back(Employee("Dilbert", ENGINEER, 400));
employees.push _back(Employee("Alice", ENGINEER, 1090));
employees.push _back(Employee("Wally", ENGINEER, 200));
employees.push _back(Employee("Asok", ENGINEER, 700));
employees.push _back(Employee("PHB", MANAGER, 600));
employees.push back(Employee("Richard", MANAGER, 500));
employees.push back(Employee("Catbert", OFFICER, 300));

sort(employees.begin(), employees.end(), compByName());
sort(employees.begin(), employees.end(), compByNumber());



Presenter
Presentation Notes
Aside from specifying that the vector stores Employee objects, the syntax for creating a vector remains unchanged from the previous section. The example creates and stores several Employee objects, and then extends the previous example by sorting them first by name, and then by position and ID number. The STL sort function has three arguments: the first two are iterators, and the last is a comparator.
Notice the parentheses following the comparator names, indicating that the sort function calls or runs the comparators. We’ll see the reason for this observation in a few moments.



OUTPUT

compByName () compByNumber ()
Alice 2 100 Catbert 0 300
Asok 2 700 Richard 1 500
Catbert @ 300 PHB 1 600
Dilbert 2 400 Alice 2 100
PHB 1 600 Wally 2 200
Richard 1 500 Dilbert 2 400
Wally 2 200 Asok 2 700


Presenter
Presentation Notes
The example prints the sorted vector. When compared by name, the output is in alphabetical order as expected. Sorting the vector by number creates three groups: company officers, managers, and engineers, with the employees ordered by ID number within each group.



OBJECT TO OBJECT MAPPING

map<Employee, Employee, compByName> employees;
map<Employee, Employee, compByNumber> employees;

Employee
Employee
Employee
Employee
Employee
Employee
Employee

el("Dilbert", ENGINEER, 400);
e2("Alice", ENGINEER, 100);
e3("Wally", ENGINEER, 200);
e4("Asok", ENGINEER, 700);
e5("PHB", MANAGER, 600);
e6("Richard", MANAGER, 500);
e7("Catbert", OFFICER, 300);

employees[el]
employees[e2]
employees[e3]
employees[ed]
employees[e5]
employees[e5]
employees[e7]

e5;
e5;
eb;
eb;

e’/;
e’/;


Presenter
Presentation Notes
The final example maps employees to their immediate supervisor. The overloaded template constructor requires three class names: the key, the value, and the comparator. Unlike the sorting example, parentheses do not follow the comparator class name in this example because it replaces a template variable, and the map constructor uses it to call the comparator.
The example creates named objects so that it can use them in multiple locations. The objects act as keys inside the indexing brackets and as values when following the assignment operator.



Alice
Asok
Catbert
Dilbert
PHB
Richard
Wally

NRERERNMNONMNDN

OUTPUT

compByName ()

100
700
300
400
600
500
200

Reports
Reports
Reports
Reports
Reports
Reports
Reports

to:
to:
to:
to:
to:
to:
to:

PHB

Richard
Catbert
PHB

Catbert
Catbert
Richard

600
500
300
600
300
300
500

RO OR O® R K

Catbert
Richard
PHB
Alice
Wally
Dilbert
Asok

N NMNMNNMNNERPERO

compByNumber ()

300
500
600
100
200
400
700

Reports
Reports
Reports
Reports
Reports
Reports
Reports

to:
to:
to:
to:
to:
to:
to:

Catbert
Catbert
Catbert
PHB

Richard
PHB

Richard

R R RPRROOO®

300
300
300
600
500
600
500


Presenter
Presentation Notes
Recall that C++ implements map containers as key-value binary trees. Consequently, the order of the nodes within the tree depends on the comparator used by the map. The map output is in tree order: first, alphabetically, and second, grouped by position and in ID order within each group.



	containers and comparators
	Data class
	alphabetical by name�comparator
	Grouped by position, sorted by ID�comparator
	Sorting objects�with comparators
	output
	Object to object mapping
	Output

