KVTree WITH A 1ist ITERATOR

The final chapter

Delroy A. Brinkerhoff


Presenter
Presentation Notes
The initial KVTree example included a simple iterator implemented with an array. Whenever a program creates an array, it must specify its size, which remains fixed from memory allocation onward. To overcome this limitation, the example suggested replacing the array with a list whose size can change dynamically over time. The final KVTree example implements this suggestion.



KVTree DATA MEMBERS

#tinclude <list>

template <class K, class V>
class KVTree

{
private:
K key;
Vv value;

KVTree<K, V>* left = nullptr;

KVTree<K, V>* right = nullptr;
public:

list<K> keys;



Presenter
Presentation Notes
We effect the change by including the list header file, discarding the iterator nested class, and making the iterator, “keys,” a list. The other member variables remain unchanged.
Understanding a typical container pattern is essential to avoid potential confusion. Containers typically have an associated iterator. This solution uses a list as the KVTree’s iterator. However, a list is also a container with its own iterator, which the tree creates and returns to the client. The client uses the list’s iterator to loop or iterate through the tree’s nodes.



KVTree OPERATIONS

public:
iterator get keys() { iterator i(this); return i; >
auto get_keys() { fill_list(); return keys.begin(); }
auto get end() { return keys.end(); }

private:
void fill list();
void add_keys(KVTree<K,V>* tree);



Presenter
Presentation Notes
We must also update and add member functions. The original get_keys function, lined out here, created and returned an instance of the nested iterator class, with the constructor filling the keys array with data.
The updated get_keys function calls a private function, fill_list, to populate the list serving as the tree’s iterator. It then invokes the list's “begin” function, which creates and returns a list iterator pointing to the first element of the list. The get_end function calls the list’s “end” function, which creates and returns a list iterator that marks the last list element. The “auto” keyword performs a type deduction operation, a more concise and straightforward way of specifying the functions’ return types.



BUILDING THE KVTree ITERATOR

template<class K, class V> template <class K, class V>
void KVTree<K,V>::fill list() void KVTree<K, V>::
{ add_keys (KVTree<K,V>* tree)
keys.clear(); {
if (tree->left != nullptr)
if (right != nullptr) add_keys(tree->left);
add_keys(right); keys.push back(tree->key);
} if (tree->right != nullptr)

add_keys(tree->right);


Presenter
Presentation Notes
The original get_keys function created a new, empty array each time the program called it. However, the updated version reuses the list for each call, so the fill_list function clears or empties the list before refilling it. Recall that the binary tree insert function adds the first data node to the root’s right subtree, so a null right subtree indicates an empty tree. Putting the clear operation before the test ensures that an iterator for an empty tree operates correctly.
The add_keys function recursively descends the binary tree, adding the key or word from the tree nodes to the list. The list’s push_back function appends each key to the list’s end.



USING THE KVTree:
THE CLIENT CODE

list<string>::iterator keys = tree.get keys();
list<string>::iterator end = tree.get _end();

while (keys != end)
{
string word = *keys++;
int count = *tree.search(word);
cout << left << setw(20) << word <<
right << setw(3) << count << endl;



Presenter
Presentation Notes
To use the new list-based KVTree iterator, the client creates two list iterators with the tree’s get_keys and get_end functions and uses them to drive a while-loop. The while-loop is logically equivalent to the for-loops used in other textbook and online examples but better parallels the initial KVTree example.
C++ programs maintain iterators as pointers, so they dereference them to obtain the indicated data – a counted word in this example. The auto-increment operator advances the iterator to the next element in the list. The program searches the tree for the word, extracts the count from the returned node with the dereference operator, and prints the word and its count to the console.



BUILDING AND USING THE ITERATOR:
A SUB-OPTIMAL SOLUTION

template <class K, class V> while (keys != end)
void KVTree<K, V>:: {
add_keys (KVTree<K,V>* tree) string word = *keys++;
{ int count = *tree.search(word);
if (tree->left != nullptr)
add_keys(tree->left); }

keys.push back(tree->key);
if (tree->right != nullptr)
add_keys(tree->right);


Presenter
Presentation Notes
The add_keys function in the current solution only adds the key – a counted word in this example – from each tree node to the keys list. This approach requires the client to search the tree to retrieve each associated value – the word’s count. Noticing that add_keys can access the node’s value as easily as its key suggests a final optimization.



OPTIMIZING THE KVTree
WITH THE STL pair

list<pair<K,V>> keys;
keys.push_back(make pair(tree->key, tree->value));

list<pair<string, int>>::iterator keys = tree.get keys();
list<pair<string, int>>::iterator end = tree.get _end();

while (keys != end)
{
cout << left << setw(20) << keys->first << right <<

setw(3) << keys->second << endl;
keys++;



Presenter
Presentation Notes
The final optimization bundles the key and value – the word and its count – in a pair object and puts it in the list. The iterators now reference a pair object rather than the key alone. Searching a binary tree is relatively fast, but not searching it is faster still. Accessing the key and value directly through the iterator shrinks the loop but requires a separate increment operation.



	KVTree with a list iterator
	KVTree data members
	KVTree operations
	Building the KVTree Iterator
	Using the KVTree:�The client code
	Building and using the Iterator:�a sub-optimal solution
	Optimizing the KVTree�with the STL pair

